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ANNOTATION

Based on the connection between stationary (uriform), in the
broad sense, random processes anc white noise, the theory of esti-
mation of the intensity of white noise, acccrding to individual
realizations, and of their practical application to analysis of
digital computer modeled and experimental nonstationary, broad-
band random processes, are examined in this work.
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EVALUATION OF THE ENERGY CHARACTERISTICS OF NONSTATIONARY
BROADBAND RANDOM PROCESSES ACCORDING TO INDIVIDUAL
REALIZATIONS

G. F. Telenin and F. V. Podsypanin

Introduction /3*

For stationary, in the broad sense, random processes, a de-
tailed theory has been developed, of estimates of the energy
(quadratic) characteristics, such as the correlation function and
spectral density, according to individual realizations [19, 20, 22].
The results of this theory are extensively applied in solution of
practical oroblems, both Wwith use of special analcg instruments
and with digital compucer application (1, 9, 12, 17].

However, completely stationary processes are not encountered
in nature. More than that, in many cases, actual processes differ
strongly from this idealized scheme.

Spectral density does not exist in a nonstationary random
process. Therefore, for a descriprtion of the energy distribution
over the spectrum, new characteristics have to be introcduced,
which depend not only on frequency, but on time. For example, the
instantanecus spectrum, defined by the relationship

ld

W, th,1) = bim 2 3 {811satf 0]} (B.1)
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is obtained by transformation of realization x(t), can be used as
such a characteristic of a nonstationary random process X(t) [23,
24]. The instantaneous spectrum is connected with the correlation
function by a certain analog relationship of Wiener-Khintchine:

\»I,({,ﬂ:tuj l(,(t,f_-'t)cos v dv | 5.3
Ko (t4-2) = f W (f, ) cos 274 d4

Systematic investigation of'the application of this char-
acteristic, which we conducted, showed that the actual (i.e.,
with small shifts and dispersicn) estimates of the instantaneous
*Numbers in the margin indicate pagination in the foreign text.




spectrum according to individual realizations can be obtained,

only when the process does not differ too strongly from stationary.
Moreover, in giving a very graphic representation of the frequency
distribution of energy with time, the i1istantaneous spectrum W

(f, ) is practically unsuitable for determination of the dis-
persion of the response of a linear system to an essentially non-
stationary perturbation. The same remarks can be made with
respect to other analogous characteristics [l1, 25]. The sig-
nificant feature here is the fact that all these characteristics
depend on two variables f and t.

In connection with this, the thought arises of examination
of another idealized limiting case, when W_(£f, t) does not depend
(or depends slightly) on frequency f. We arrive at this phase,
by examining the so-called white noise, i.e., an idealized /4
random process. with uncorrelated values, in which

Kx (t‘,tg) = g‘(t‘)g(tx‘ t:.) ’

where 6(t) is the Dirac delta function, and bx(t) is the white
ncise intensity.

(B.4)

By substitution of (B.4) in (B.3) and considering that
Sy dwydt =L ¥(0) ,

we obtain
W 1) = 4 [ 4(t) §()cos 27frdT = 24,(1) . (B.5)

The white noise intensity, for example, permits easy determi-
nation of the correlation function of the linear system response.
Let the response of system Y(t) to the action of random process
X(t) be given by the relationship -

Y(t) =jj°£(t,y)X(§)dg , (B.6)
Then vooren
SUMNES BRI ALICN ST AP 5.7

and, for white noise, by substitution of (B.4) here, we obtain

Kyttt Rt S0 kit 30 65 dy, (8.8)



White roise is the limiting form of actual broadband non-
stationary processes, the correlation functions of which are close
to (B.4), in the sense that relationship (B.8) is approximately
satisfied, with a certain function b_,(t). This function can be
approximately interpreted as the effective intensity of a broad-
band process or, in accordance with (B.5), as half of the in-
stantaneous spectrum.

Certain necessary information is presented in the first
chapter of this work, from the theory of generalized functions and
the theory of random processes and, based on the connection ex-
isting between staticnary (uniform), in the broad sense, processes
and white noise, the theory of estimates of white noise intensity
according to irdividual realizations is examined.

In the second chapter, questions are studied which are
connected with the application of these estimates to analysis of
digital computer model and experimental nonstationary, broadband
random processes.



CHAPTER I

THEORY OF ESTIMATES OF WHITE NOISE INTENSITY

1. Some Information from Theory of
Generalized Functions

White noise is an idealized random process, and it cannct be/5
realized experimentally, since infinite power is required to
maintair it. This fact is expressed mathematically, in that both
realization of the process and certain statistical characteris-
tics of it (for example, the correlation function) cannot be
described by means of ordinary functions. Therefore, the simplest
and most consistent theory of such process can be stat=d with the
use of the apparatus of generalized functions.

For the purpose of this work, what physical meaning should
be put into the concept of white noise and what mathematical
algorithms permit an actual determination of the quantitative
characteristics of the process must be quite clearly represented.
For this we use certain simplest results of the theory of general-
ized functions{2, 4-6]. In order not to overload the work with a
large amount of special concepts and terms, we restrict ourselves
to only a qualitative description cf these results, without re-
sorting to strict and detailed mathematicazl formulations.

We analyze set K, of all functions y(£), each of which has
continuous derivatives of all orders and is finite, i.e., it
reverts to zero, outside a certain limited interval (of its own,
for each function y(£)). The sequence Y;(&), Y2(8), . . . ,
wn(E), . . « is considered to be convergent if all functions of
the sequence revert to zero outside the same interval and converge
uniformly toward a limiting function, just like their derivatives
of any order. With this definition of convergence of a sequence,
functionsy (£) are called basic, and the set of them ¥,, basic
function space. Space K, is evidently linear, i.e., together
with ¥37(€) and $,(E), functions ayy(§) + BY2(E) belong to space
K,, for any constant a and RB. We note that the analytical func-
tions of a real variable are not included in space K,, since they
cannot identically revert to zero in a finite interval. An ex-
ample >f a function, which is infinitely differentiable and which
reverts to zero outside the interval -a < § < a, can be

G..'
-2t
ga={ £
0

for 13l <a , (1.1)
for |‘§| >



Now, let a locally integrable f(f) be assigned, i.e., the
function of the absolute integrand in any finite interval. Then,
by means of £(£), a linear functional can be assigned

<-},Y>=j°f.f(x)+(;)d§ , (1.2)

which each function Y (£) of space K, places in the corresponding
number <f, y>. In (1.2), integration actually takes place over a
finite interval, in which a given function $(§) differs from zero.
Let the sequence of basic furnctions y¢;(§), ¢o(E), . . . , Yn(€),

. . . converge in Y, towards basic function %(E). Since local
integrability of function f(£) and the nature of convergence in

X, permit transition to the limit in (1.2), under the integral
sign,

+ OO

S chotr =B [y dg - (1.3)
= [ ¥y =< $,¢>

In this manner, functional (1.2) is not only linear, but /6
continuous, in the basic space.

It can be shown that the values of functional (1.2) in space
¥, unambiguously determine function f(§), i.e., any locally
integrable function can be fixed by its values, for each value of
the argument, and it can be fixed, by means of an infinite set cf
numbers (1.2), corresponding to all possible basic functions.
Formula (1.2) gives a very particular form of linear continuous
functionals in space %,, which usually are called regular. By
generalization of only what has been said, any linear continuous
functional, defined in basic space ™K,,is identified with a certain
generalized function f, and they are written in the form of the
symbolic equality

+ 00

<> = J Ay dy. (1.4)

In the general case, a generalized function f cannot be fixed by
its values for each value of the argument and, consequently, it is
not a function in the ordinary sense, The most well-known
example of a genera. ‘ed function is the Dirac § function, which
is defined by the relationship
4 oo
< > = P T =
2= | S Ydy = Yo .5)



It should be noted that linear, continuous functionals (and,
consequently, generalized functions), defined in K,, usually can
be continued to broader classes (spaces) of functions. Thus, for
example, § function (1.5) has been defined for any functior bounded
almost everywhere, fixed by its values at each point.

Summation and multiplication coperations by number, for
generalized functions, are defined by the relationships:

<{1*{1,Y>=<f1,‘f>+<}u*7, (1.6)
<Lf,¥>=d<f,¥> =<}, 4¥>,

The product of generalized functions is not determined in the
general case, but multiplication of generalized functional f by
function a(f), which is infiritely differentiable, is given by
the formula

caf,¥>=¢f,ay> (1.7)

The limiting transition is determined in the following manner.
The sequence of generalized functions £y, f,, f3, . . . , f
« « « , by definition, converges to generalized functional ?

nt-‘;"-‘; fo=f , (1.8a)

if, for any basic function

fim <f  ¥>=<§,¥> | (1.8b)

n-= oo

It can be shown that, when a sequence of generalized functions /7
converges, its limit is determined unambiguously, and it always is
a generalized function. The operation of the limiting transi-

tion is linear, i.e., from the condition

lim. fsu = !4 ' Lim fu = f:.

n-o ob ">

it follows that

‘ d fyu + = s+t T
o (Ldmephal=Lfieth (1.9)

where o and B are any numbers or infinitely differentiable
functions.



If a sequerce of locally integrable fuictions fl(E), £5(E),
£4(8)y « . . . £,(E), . . . , converging towards locally integrable
function f(£), such that in (1.), one can proceed to the limit
under the integral sign, for any basic function

fom <hu ¥ = <fi,

i.e., the seasuence converges, in the sense of generalized
functions. This takes place, for example, if f, (§) + £(£) almost
everywhere, and |f,(£)| isbounded by a fixed constant in each
finite interval.

The following proposition is important for practical
applications. Any generalized function (functional) can be ob-
tained, as the limit of ordinary functions (regular functionals).
As an example, we introduce the so-calleddelta-form sequence, i.e.,
sequences of ordinary functions, which are convergent in the
meaning of generalized functions to §~function (1.3). In order
for sequence fy(£), £5i&), . . . , £4(E), . . . to bedelta-form,
the following conditions must be satisfied:

a. for any U > 0 and |a| £ U, |b]| S U, the quantities

(|
]!f“(x)AZi < c (1.10)

are bounded by constant C, independent of a, b and n;

b. fo. any fixed a and b, not equal to zero,

{ 0 for a<bed or0cacd
A [ipdy = ‘ (1.11)
o0 a

One of the most common ways to construct a delta.form sequence
consists of the following. Let w(f) be any function, which
satisfies the conditions

I. wip=w(-1);
A
2. Lim [w(pdg =1;
Err el I A (1.12)
3. _r}U(‘p]' dy < o0



Let us examine a sequence of functions with the common term
W P = Low(2a), bim Locoo, (1.13)

According to the second condition of (1.12), for a < 0 < b, /8

4 "
b Jouepdy = iz fpag 1,
and, for a < b < 0 or 0 < a < b,

¢ A
&m. JU;‘(T)JX ="€_:'»:.\- [

n-o a0

Lkw’(’pdz =0,

Further, according to the third condition of (1.12), w(g) is
integrable in each finite interval. We form the nonnegative
continuous function

F = u"w(g) di| .

Frorn the first and second conditions of (1.12), it is seen that
function F(n) isbounded on all axes -» < 7 < +», by a certain
constant B and, conseqguently,

s L8
I f”z,‘l)di = fw(pd'g $F(LE)+F(La) < 2B,
a Lo

where B is independent of a, b and n. In this manner, for W (£),
conditions {1.10) and (1.11) are fulfilled, and the sequence ¥s delta-
form. The set of delta-form sequences constructed encompasses
everything usually used in practice. From the reasoning pre-

sented, it is seen that the third condition of (1.12) can be

replaced by the requirement of integribility of the function in

any finite interval.

We now examine the determination of more complex operations
with generalized functions. All these operations result by
distribution to generalized functions of the corresponding opera-
tions for common functions, expressed in the language of
functionals. Let f(f{) be a continuous function, having a continu-
ous derivative f'(f). Then,by partial integration, considering
that each basic functicn Y (£) reverts identically to zero outside



a certain interval, we obtain
HLyo = [qrmdy == [Ap Y=<, -,

where y'(f) also is a basic function. 1In accorcance with this,
derivative f' of generalized function f is defined by the rela-
tionship

ALY > =f,-" (1.14a)

or, in symbolic form,

<f', ¥y -I;(g) +'(;)J§ . (1.14b)

It can be shown that the functionzl defined by formula (1.14)
is linear and continuous. In this manner, in distinction from
ordinary functions, all generalized functions have a generalized
derivative and, more than that, they are infinitely differentiable.

Further, in distinction from ordinary functions, a converging
sequence of generalized functions can always be differentiated
termwise. Actually, let sequence £;, fo, . . . , f4, . . . con-
verge towards f, in the sense of generalized functions. Then,
ir accordance with (1.8b} and (1.l4a), for any basic function
Y(£), we have

R R A S A SRR A2

i.e., ﬁg
nﬂ&»:u (}:”Y>= iy (1.15a)
or
.}i’ﬁ fo = § (1.15b)

Let us now examine *he convolution of generalized functions.
Let f£(£) and g(f) be crdinary functions, absolutely integrable
over the entire line. Then, their convolution is defined by
the relationship



in which h(¢) also is an absolutely integrable function. The
functional of , defined by function h(f{), in accordance with
{1.2), is written in the following form,

<k, > ='j:[#f *(7)3(I"1)d7]\}“(§)d] =
~Trp[Tarttne o) ldy .

?herefore( the convolution of two generalized functions f and g
is defined by the relationship

Chxg, ¥ >=<F, 45, V(I (1.17a)

or, in symbolic form,

+ o0 + 00
- . (1.17b)
<irg, v o= Lapl ] gt qendldy,
It can be shown that the inrner functional (1.17) is an infinitely
differentiable function, but not finite and, consequently,

it does not belong to space %,. Therefore, in the general case,
the outer functional (1.17) is not defined. However, in suffi-
ciently general assumptions, relationship (1.17), nevertheless,
has meaning. We introduce only one condition,which is sufficient
for the purposes of this work.

It is saif that a generalized function (functional) f is
concentrated irn. -closed interval [a, b], if., for any bhasic function
v (£), which reverts to zero in the open interval (2 ~ €, b + ¢),
for as small as desired € > 0, there is an equality <f, %> = 0.
Such generalized functions (functionals) also are called finite.
If regular functional (1.2), determined by ordinary function f (),
is concentrated in closed interval [a, b], this means that
fur.ctions f(£) almost everywhere (with the exception of the set of
zero measure points) outside [a, b] revert to zero.

For convolutionof generalized functions f and g, there is
trhz following proposition. For the truth of equality (1.17), it
is sufficient that one of the generalized functions f, ¢ be con-
centrated in a certain, bounded closed interval.

For some bounded operations, the convolution of generalized
functions are continuous. For the generalized functicns defined

10



It %,, there is the following simple, sufficient condition: /10
If the sequence of generalized fun<tions £y, f,, f3, . . . , fp,

. » « 45 concentrated in aboun&d interval, converges toward a
generalized function (obviously aiso concentrated in the same
interval), for generalized fuacticn g, there is the equality

o cha®g> = Chego
or, in symbolic form,

Jlm fa¥g = fxg

In the preceding statement, it was assumed that basic functions
Y(E) and functionals <f, y> take only real values. However,
complex generalized functions can be defined in precis<ly the same
way. For this, it is necessary to change from a space of real
basic functions to the space of complex basic functions (i.e.,
infinitely differentiable and finite), which we, as before, will
designate H,. In this case, each complex, locally integrable
function f£(&) corresponds to functional

+ 00

<hy> =1 pypdy, (1.2a)

where the asterisk designates a complexly conjugate quantity.
Relationships (1.6) and (1.7) take the form

(}1-"1’1)* >= (§17*> + ({‘1)*) ’ (1063)
LR S ERARS NSRS MPALS

and

<o,y > =<, > (i.7a)

where a is a complex number and a(x) is a complex, infinitely
differentiable function. Each complex generalized function can
be compared with the complexly corjugated genexralized function
f*, by the formula

SUL S LRSI S (1.18)

11



The results obtained for real generalized functions, basically,
are automatically carried over to the complex case, with allowance
for changes flowing from relationships (1.2a), (1.6a), (i.7a) and
(1.18).

We have given a brief survey of certain operations for gener-
alized functions, defined by means of linear, continuous functionals
in basic space ), . Before we proceed to subsequent material, we
note that there are many other basic spaces, in which generalized
functions can be defined in the same manner. In this case, the
properties of generalized functions and definition of operations
are basically preserved. The set of generalized functions
determined in different basic spaces do not coincide, although
they intersect. It turns out that, for solution of different
problems, it is convenient to use different basic spaces.

We now proceed to examination of Fourier transforms of gener-
aliced functions. In this case, we will always understand K, to
be the space of the complex basic functions defined above. For
any basic function ¢ (£), we examine the Fourier transform, with
the complex parameter @ = A + it

Flypl =Y {Iﬂp ﬂiZ'Q’J; _ (1.19)

Assuming here that t = 0, we obtain an ordinary Fourier
transform Y (A). Since y(£) is a finite function (the integral
actually is taken over a finite interval), in (1.19), differen-
tiation over Q car. be carried out an unlimited number of times
under the integral sign and, consequently, y(f) is an integral
analytical function.

Derivatives ¢ (£) pertain to space K, . Therefore, by /11
partial inteqration, we have —

+ o0 e + 00 282 ~
BRASH e‘z'ma\; - amRype Hy - iBRTE).

Continuing this process, we find that, for any real number gq

Flyvpl= i) Frygpl . (1.20)

Further, for any basic function (), by virtue of its finite
nature, such an a > ¢ is found, that ¢ (f) reverts to 0, for
|€] 2 a. Then, in accordance with (1.20), we have an estimate

12



as §{i + =

25 algl (1.21)

’

121 1 1= 1% ¢ ® s < e

where constants C, and a depend on concrete function %(Q . The
resulting relatiogships show that the Fourier transform %(Q) o<
each basic function §(£), reverting to zero for l&l a a, is an
integral analytical function, which satisfies inequality (1.21)
to infinity.

The reverse statement can be, proved in a similar mannar:
any integral analytical function w(Q), having the properties
specified, is the Fourier transform of a certain infinitely
differentiable function ¥(£), which reverts to zero at |E| 2 a,
in which

A~ APPSRy | )
TF ‘[~r(x)]=1'(§) =_L‘r(%)e Fax (1.22)

Thus, a Fourier transform, considering its singleness,
establishes a mutually unambiguous correspondence between all
functions of space K, and the set 4, of all integral analytical
funqs}ons, whichh§atisfy condition (1.21) to infinity, i.e.,
4,=%, andy, =%, .

The limiting transi&ion can be determined in set ¥, 6, con-
sidering that functions Yy, (Q) converge to ¥y (9), if their forms
¥, () converge to form ¢(f). This definition ig equivalent to
tge following; sequence %1(9), 32(9), « e e s Yy, . ..
converges to %(Q) in %¢,, if, for any real g, the following in-
eguality is satisfied

| 2 F.(R)1 ¢ e

with constant and a, not deperdent on n, and %n(x) tends uni-
formly toward ﬁ?k) in each finite interval, With such a defini-
ticn, the convergence of set "4, forms a basic space, in which,

by meants of linear, continuous functionals, generalized functicns
can also be determined.

With generalized functions in hasic space '£,, operations can
be carried out, similar tc those introduced above, for generalized
functions in "W, space. The regular functional has the same form
(1.2a). The operations of summing and multiplication by number
and the limiting transition contain nothing new. The operation of

13



multiplication by function a (), formally defined by the same
equz2lity (1.7a), now becomes fulfillable for a narrower class of
functions, which satisfy conditions of the type

gi<l
la@)f ¢ Ce ({+151)} (1.23)
fcr certain b, g and C. /12
The derivative of the generzlized function g' = dg/dQ is de-

fined by the same formula (1.14). 1In this case, generalized
functions in ¥, are not only irtinitely differentiable, but
analytical.

Just as for generalized functions in K., the convoluticn of
generalized functions in ¥, is defined by formula (1.17). The
sufficient condition formulated above, in order for definition
(1.17) to have meaning, remain true in this case. The convolution
operation is continuous for generalized functions in *%,.

Since there exists a mutually unambiguous correspondence
between basic spaces X, and #,, with preservation of the operations
of convergence, summation and multiplication by a number, an
analogous ccrrespondence can be established between linear con-
tinuous functionals in these spaces, i.e., between generalized
functions in X, and ¥,. This correspondence is established in
such a way, that in functionals corresponding absolutely to
integrable functions, it would be converted into a correspondence
between a function and its classical Fourier transform.

Let f£(£) be any absolutely integrable function and ?(A its
Fourier transform._ Then, for any function ¢ () from ¥, and .ts
Fourier transform m(x) from 4,, there is a correlation [18]

+ ot

<y = | gy =§ﬂ TwFmar=<§,7>, (1.24)

which is called the Parseval equality. ,This correlation is taken
for definition of generalized function ¥ in space %,, for any
given generalized function f in space K,. The generalized func-
tion (functional) is called the Fourier transform of generalized
function (functional) f, and this fact is written in symbolic

form

F=Fry.

For the Fourier transform of generalized functions, the
usual differentiation formulas are preserved. They can be written
in symbolic form

14



P(42)F161 = F( Pup 41, .25)
FLe(g) 4 = PGSR Ty

vher2 2 /x) is a polynominal.

Ti» inverse Fourier transform operator G ' is determined
andi in % is converted into f in ¥,, by the same formula (1.24)
(read from rlght to left), so that

<CFUTY, ¥ o> =<k, FLyr o (1.26a)
or, irn ,ymbolic form,

FTFenl=§, FITh]-1. (1.26b)

The fact is extensively used in analysis, that the Fourier
transform convolitions of integrable functiogs £(£) apd g (&)
equa! the product of the Fourier transforms f(\) and g(l) of
these functions. Under certain conditions, this equality holds
true fcr generalized functions.

Ne present here only the simplest sufficient conditions. If,
of tw> generalized functions f, and f,, defined in space X,, one
is fiaite, i.e., it is concentrated in a bounded interval, there
occurs the form» a

Flxt =15 . (1.27)

As &n examgle illustrating *" = execution of a transforma- /13
tlon, by means cf generalizing functions and explaining the mean-
ing of a generalized Fourier transform, we introduce one result
which is ucgeful f(. the future. We have

2T gin A (1.28)
_Le 9y = 5% .

For * q A = «, the right side of this equality, as it is easy to
se , is a delta-firm sequence, so that

15



An
bm [ &2 dy = 5V (1.29a)

n -+ 00 ‘A.\

in the sense of generalized functions. It is easy to see that
the left side becomes the generalized Fourier transform of unity
i.e., functions (), for all £ taking the value of 12a In fact,
in conformance with (1.2 ), taking the complex conjugated quanti-
ties in bpth parts of the equality, and multiplying by the basic
function Y (1) and integrating over ), we obtain

A, <400 - roo
i L Fon €5 V0[dy - e [ oGy

or, proceeding to the limit arnd using §-function definition (1.5)

<Ay = 1y ds = 1o= <55 > (1.29b)

Now, let £(£) be any locally integrable function, growing as
|| + =, no faster than a certain positive power of lgl. Such a
function can always be represented in the form

= fp (14397, (1.30)

where f,(f) is a function, absolutely integraile on the entire
straighgline -© < § < + o, Since £, (£) has a classical Fourier
transform, the following limit exists

An . ~ 1.31)
by [Ap ™y = Loy |
Since s
o c2ENY i
,{ ap e < 1mldy

the meduli of all terms of the sequence in the left side of
equality(1.31) are pounded by a fixed constant and, consequently,
it also converges, in the iens of generalized functions.
Applying the operation (-d</dX< + 1)® to both sides of (1.31) and

16



If X&) is an ordinary, inteqrable random process, the inte-
gral on the right side has meaning, and functional (1.33) is
called regular. The operations on the generalized random
processes are determined, in the same manner, as for the deter-
minategeneralized functions, and they basically have the same
properties. Thus, for example, for derivative x ' ({£), we have

<Xhy>=<X,-¥'> . (1.34)

We note that, while the derivative of a common random process

may notexist in any probabilistic sense, the derivative of a general-
ized random process always exists, and it is a generalized random
process. Thus, in the set of generalized random processes, for
example, random processes are included, with uncorrelated values,
obtained by differentiation of the processes with uncorrelated
increments.

The mean value (mathematical expectation) of the generalized
random process X (£) is called a functicnal

m,l(‘f) =<X,"r> , (1.35)

if it is defined and continucus in K,.

The correlation functional ofgeneralized random process X (£)
is called a bilinear functional

Bx(\h;*z):(x,*x)(*x;\h.)* (1.36)

if it is defined in X, and is continuous over each ol the argu-
ments Yy (£) and Yo (§). If X(§) is a common integrable process,
in accordance with (1.33)

5:((*1;\*1) =£L K:(T':ZL) \h(ji)\f/z'(jz)dj,ds,_ _ (1.37)
=1 LM, 0) W) H G gy,
since Ki(1.,T0) = K:(Tnfz) . /15



using the possibility of an unlimited differentiation of the
sequence of generalized functions, we finally find that, in the
generalized sense,

An ;23\ d?. wm o~
B [ 09 €50y = (-5 + 1) £ (1.32)

R0 -AL

i.e., for the functions presented in the form of (1.30), there
always ¢ ists a generalized Fourier transform. This result could
have been cbtained immediately, by applying formula (1.25) to
(1.31).

With this, we end the brief survey of the properties of
generalized functions and operations on them.

The advantages of the use of generalized functions is de~ /14
termined by the fact that the operations can be performed -
formally by known rules, when, in the ordinary sense, they do not
exist. For interpretation of the final result, it is not ex-
pressed by normal functions; it is convenient to use the
capability of representation of any generalized function, in the
form of the limit of a sequence of normal functions, which con-
verge, in the sense of generalized functions.

We note that all the relationships presented remain true,
in the case, when all the functions depend on, not one variable,
but on m independent variables. In this case, functions m of
variables having the same properties as with one variable, must
be used with basic spaces %, and Z.. Natural changes must be
incorporated into the formulas, assuming that

dp=dpdy, e, dh=dhdL D
d—= -)'\. i_ B ’)'ﬂ-
T TS S U VYo Y W S W

AT = 125 (N Ta+ MTe v o A Tm)

S cC.

Just as in the case of determinate functions, generalized
random processes (functions) can be defined in space %;. 1If
each basic function Yy (£) is compared to random quantity ¢(y),
it is said that the random functional has been assigned. A
continuous, linear random functionaldefines the correlated
random prccess X(£), which can be written in symbolic form

18



In the case of white noise Y (£)

3

+ 4 00

Bylt,f) = L L &3 8- T 1) K G dpd, =

il
I

(1.38)

8

+

1
e

AR ASAR SCAT LT

Just as in the case of determinate functious, generalized
rardom processes can be defined in other basic spaces.

2. Study of Connection Between Uniform
{in the Broad Sense) Processes and
White Noise

We will use the capital letters of the Latin alphabet X, Y,
Z, etc., for designations of random processes (in “he genesral case,
of complex ones), and the correspond:ng lower case letters x, vy,
z, etc., for designations of their realizations. For time and
frequency, we retain the designations : and f; in 211 other cases,
we will designate the independent variables by thr lower-case
letters of the Greek alphabet £, X, etc. We designate averaging
over a set of realizations by a line abocve, and the operator for
taking the mathematical expectation, by the letter €. For the
first twn fzatures of random process X(£), we have respectively,

M) = X_@ =&lapl
Bo(7.%.) = X X)) = 6 [x(10x" (3] .

The corplexly conjugate quantities are designated by the
asterisk superscript in the last formula.

The correlation function and dispersion are are defined by
the relationships

K,('f, 15e) = B"(THL.) - Y.‘L.(ft) m—:if{&)r
27 =K AT, 7).

Further, during the entire work, we will consider random processes
to be centered, i.e., it is assumed that

”"l,((f)z[)y K‘(Z(,El) = B;(Tl yT!) .
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We now turn to certain results of the general theory of
random processes [7, 8, 10, 14]. 1In order to emphasize that the
independent variable does not mean time without fail, random
process X&) with a zero mean, finite dispersion and a corre-
lation function, dependent only on the difference of the arguments

m(3)=0, D7) = const ¢ o0, (2.1)
Ke (T3, 3) = Ky (T, - T.)

we will call uniform, in the broad meaning.

Subsequently, if it is not stipulated to the contrary, it /16
is assumed that a random process has a correlation function, which
is continuous on line §, = El @énd, consequently everywhere).

This condition is necegsary and sufficient fzr continuity of
the process, which is gquadratic on the average, i.e., for the
truth of

2 _

The correlation function of such random processes can always be
represented in the form

K37 = | ¢ #PICR) g ’ (2.3)

where function 9()) is real, diminishing and bounded,
Foo) = Fr-oo) = K, (0) =9y |

is called the spectral function of process X(¢). In turn, Fin)
1> given by the relationship

T 2N e-iZ?A,I

Fon) - Fo) = lim [ £ = KApdp (2.4)

Tew 7 —iZ‘if

where A, and A. are any two points of continuity of this function.
If func%ion’ﬂAf is absolutely continuous, i.e., it has a sum-
mable derivative (spectral density)

20



3

W, =

(2.3) and (2.4) change into the Wiener-Kint-hine relationship

K_,('I) =—0!° E;Z';»\qw‘(”a“\ '
W, (M) =-’f ¢ K ) dn

(2.5)

where n = £, - 52. In cases when the spectral density is inte-
grable according to Riemann

Twnyds < o,

there also are ordinary Riemann integrals in relationships (2.5).

We require random processes 2(\), with zero mean and incre-
ments, which are uncorrelated in the nonintersecting intervals

m,\=0,
[Z00 - 20N 20 = 27001 =0, A\ <A 0, (2.6)

It usually is assumed here that the increment has a finite dis-
persion

1 2(A) - 2(A)1% < o0 (2.7

All the properties of such processes connected with increments

d¢ not depend on supplements with an arbitrary ("constant") random
value. For example, Z()) can be replaced by Z2(\) - 2(x,), i.e.,
the process, taking zero valueg at point ) with probagility 1,
can be considered. If a determinate real %unction is defined

1200 -2\ for Ay )\,
Ty = ’ (2.8)

“12ZN 20N gor A €, |

in accordance with (2.6), for Az 2 Al /17



1200 = ZAD 1 = Fiag) - T, (2.9)

i.e., TF(n) is a nondiminishing, bounded (see 2.7) function, so
that, at each pcint ), there exist bounds on the left Fu.o)

and on the right TF(A+0), Such functions, as is known, can have
the largest cour*=ble set of discontinuity points of the first
order. In accordance with (2.2), it follows from relationship
(2.9) that, at each point of continuity 9%(A\) (i.e., almost every-
where), the process with uncorrelated increments Z(A) is continu-
ous in the mean square.

Subsequently, we frequently will use the concept of conver-
gence of random qgualities in the mean square to random gquantity
S

l.iim. S. =8 (2.10)
if bm VS.-SPP =0 .

occurs. We introduce the following convenient sign of convergence.
The sequence of random quantities S,, S, S3, . « . with finite
dispersions, convarge in the mean s&uar% to~a certain random
quantity S; when, and only when

2.10
Bm S 8% = C  |Cl< o0 (2.10a)

LA ’
n -

T

as m » » and n + » independently of each other. In this case,
of course,

Jim 5. =5, (2.10b)
Lim 1S = C =TS

The following proposition also is useful for the future: If
sequences Sll’ S 91 Sl . . « and 5,4, 822, S . . . converge in
the mean sqiiare %o ranaom quantities 5y and CPY respectively,

Sim S = S5, S, (2.11)

e

m
L o0
n o0
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We recall how the Riemann integral is determined from random
function X (&)

|4 —~

and the Riemann-Stieltjes integral, from random function Y(§)

{
jzzjg(p Y , (

o
"J
IN)

vhere (a, b) is a finite or an infinite interval and g(f) ic
determinate function. Let there be

a=§,<h<...<§3< ...<'j,“,=£

a certain partitioning of interval (a, b) and

Sin = fjg&L)X\L)\ﬁnfjﬂ,
J.(
San= 23 9L YAT, - YIT)]

the sums approximating integrals (2.12a) and (2.12b) respective-/18
ly. If, as n +» «,
max (T -T) wa=> 0, j=42,..,n
4

n -+

and integral sums S n and S,, converge in the mean suuare to
certain random quan%lties 1 "and 3J,, independently ot the specific
partitioning of interval (a, b), it is said that integrals (2.10)
and (2.11) exist in the mean square sense and equal these

random quantities. Necessary and sufficient conditions for this,
in accordance with (2.10a), consist of the existence of the
Riemanrn integral

¢
AN If 97 9752 KT, ) T, 7, (2.13)

[-%

and <the Riemann~-Stieltjes integral
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¢
NI E AP RCARTNEAS A (2.14a)

a

of ordinary dsterminate functions. In the case when Y(f) is a
random process with uncorrelated increments, in accordance wiri.
(2.6) and (2.9), the latter condit.on can be reyuresented in
equivalent form

¢
%"= J iy dTop

(2.14b)

if, as a + - », b * + », integrals (2.13), and (2.14) converge,

the correspording integrals of the random functions (2.12a) and

(2.12b) also converge in tha mean square sense, and the limiting
random quantities J; and J, are called the values of these inte-
grals in the mean square, over an inrfinite interval.

Stochastic integrals (2.12a) and (2.12b) defined in this
manner have the properties of ordinary integrals. For example,
if, beside satisfaction of conditions ensuring the existence of
integral (2.14), it is required that function g(£) have, in
interval {a, b), integrable according to Riemann, derivative g'(£),
a formula for integration by parts occurs

fg(;)dX(gl g% (8) - 9@ X() - fg('X(‘j)J]’ (2.15;

We now examine the stochastic integral

X(3) = Ig(7 1 dzo, (2.16)

where Z(n) is a process with uncorrelated increments, having &
bounded dlsperqlon. If the integral on the right side, for each
£, converges in the mean sguare, formula {(z.16) defines random
process X(§), which, in turn, can be integrated. If g(n, ¢; and
h(£) are continuous functions, satisfying the conditions

Jrigm,pl‘dyol?(?) < o0
? (2.17)

1B01PdT ¢ o0,



where 9701 = | 42.31* in the repeated integral, the order of /19
integration can be changed, i.e., the following relationship holds
true

¢ ' oo
12(1')[ gy dapdsy - 2.18)

+ o0

g
:-L [ l“j)j(y],j)dﬂ d2iy.

1f, beside these conditions, there exists the improper integral

+ 00

L Hpymp iy,
(2.18) occurs for the infinite interval (a, b).

We now proceed to establishment of the connection between
uniform processes and white noise. In accordarnce with general
theory, for any uniform process X(£), there exists such a process
with uncorrelated increments Z (1), that, for each fixed £, there
is a spectral representation

4

X(p= e gz
- (2.19)
F200) - 2001 = FO-F(N) for A, 5\,

where the integral converges in the mean square, and TF{) is a
function of spectral representation (2.3) of the correlation
funztion of the uniform process. 1In this case, process Z(X) can
be defined by the formula

i [ e I (2.20)
200 - 20 =bim. | S X(5)dy

where X, and kz are any two points of continuity of function FT()).

On the other hand, for any process Z(\A) with uncorrelated
increments, having a finite dispersion

1200) = 2001 =T - F(A) ¢ o
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for any A 2 A in accordance with (2.14b), the integral on the
right 51de of %2 19) converges in the mean square for each fixed
£ and, consequently, it defines a uniform random process, the
correlation function of which satisfies relationship (2.3).

In this manner, relationships (2.19) and (2.20) establish a
correspondence petween the uniform processes and processes with
uncorrelated increments, defined at the beginning of this section.

We now use the generalized function apparatus presented in
the preceding section. Let function ¥ (f) belong to basic space
K, , i.e., be infinitely differentiable, and revert identically
to zero outside a certain finite interval. 1Its Fourier trans-
form

+

¥y =]y e Ty

where @ = A + i0 always exists, belongs to basic space 21=5Q
and, in accerdance with (1.21), on the actual axis (for ¢ = 0),
it satisfies the inequality

~ Ca
YO ¢ T (2.21)

for any n > O.

For any function %(A) /20
_l 1 YOG ¢ oo,
and, consequently (see (2.14b ), the integral

S TN d2(N) (2.22a)

converges in the mean square and deflnes a random, linear, con-
tinuous functicnal in basic space 2=-% Since, in this case,
formula for partial integration _(2.15) ‘holds true and, in
accordance with (2.21), Y(-e0) = \y(ﬂ,o) =0, from (2.22a) and (1.14)
we obtain
veo
=- | ¥'0) 2Md) =

Ry 2.2
=C 2, -F'w> =< 2N, Ty > . (2.22b)

In this manner, the generalized function fixed by functional (2.22)
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is derivative 2'(X) of process with uncorrelated increments Z()).

We now multiply both sides of equality (2.19) by ¢ () and
the integrate over £. Considering that, in this case, the order
of integration car be changed in the repeated integral (see
2.18) and, using (2.22), we obtain

<X, 1> = TX 15 dy -

=:j Y(;)[_:Jje‘m‘ dZwldy =
“Tthvpe™Tnizw- (2.23)
:I FONAZW) = <20, 1in >,

where (a, b) is an interval, cutside of which finite furction

¥ (£) reverts identically to zero. By comparison of this result
with (1.24), we see that X(£) and Z'()) are Fourier transforms
of each other, in the meaning of generalized functions, so that
the following symbolic relationships can be written

Xy -‘l W e T 4y , (2.24)

2'(N ='I X3 ¢ a7 - (2.25)

With consideration of the singleness of the forward and reverse
Tourier transforms, it follows from here that there exists a
mutually unambiguous relationship between the generalized deriv-
atives 2'()) of the random processes with uncorrelated increments
and the complex, uniform {in the broad sense) processes X{({).

We dwell brieflyon certain properties of the generalized,
randorm process Z2'(\). For this, we examine the correlation
furctional

Bf($l)\?b)=<2"cfi><2‘" :Fz-; (2.26)

In accordance with (2.22),

4+ 00

3 = N 2.27
20, ¥ = ZWOFWdA= [ ¥wd2m, (2.27)
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where the first equality is symbolic and the integral of 2'(X) /21
is understood in the gense of generalized functions. Con-
sidering that Z()A) is a process with uncorrelated increments and

ld2ml™ = dFw

from (2.27), we obtain

+ 00 $00

Bz‘(:ﬁ }\?x) :-:i__[, %U‘:)?.:(Az)Ka'uh)‘lH'\‘J’\‘=
$.Lwo oA (2.28)
:_L LA EACYFE VT

where the first equality, again, is,A symbolic. It can be shown
that any function of two variables Ay, A,) from the basic
functional space ¥, X, can be represénted, as the limit of a
sequence of linear combinations

Z o Y00 CF;(A:.) ,

l,)

where %i(x) and ¥:(}) belong to the basic space ¥,= X, is a
function of one vAriable; congequently, relationship (2.28)
defines, in basic space £,= X, a linear, continuous functional,
which can be written symbolically in the form

400+ 80 —~
KA, T n)> = [ O YO AL, (2.29)
3¢ that, according to general definition (1.4), correlation

function Kz.(ll, Az) of process Z'()) is a generalized function.

If the process with uncorrelated increments Z(A) is such that
nondiminishing function F(A) has a derivative, which can be
integrated in each finite interval ‘Xl' lz), i.e., for any Al < Az,
there exists the relationshij.

A

| 200) = ZOADI = T0) -F0) = f T, (2.30)

by transforming the last integral in (2.28), we obtain the symbolic
equality
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tj&» '.So CYI’(A‘)?:(A?.) Kz'(xs,)‘z) d)\,a\/\z =
= :L Tt M F'WdA,

(2.31)

from which it follows that, in the sense of generalized functions,

Ha A M) = T §(A,-0,) (2.32)

where §(A) is the S-function. In thas ~ .nner, by satisfaction of
condition (2.30), process Z'(\) is white noise, as it was defined
in the introduction.

In summary, we find that a mutually unambiguous correspondence
exists between white noise and uniform (in the broad sense) pro-
cesses, having spectral density W(A) = TF'(A) .

The nondiminishing, bounded function F(A), which is the
spectral function of the uniform (in the broad sense) process
X{f), as is known, can be expanded into the sum of three com-
ponents

where F,(\) is an absolutely continuous function, having de- /22
rivative T/(A\), _.ntegrable in the Lebesgue sense; T,(\) is a step-
wise function, with jumps in a finite or countable number of
points; T\ is a continuous function, distinct from constants,
the derivative of which almost everywhere, i.e., with the

exception of the set of zero measurement points, equals zero.

The presence of jumps in function T(A\) is closely connected
with the properties of correlation function K (n) = K (£1 - 52)
of process X (%)

N

Jg:m. ]LLOIK ('pt“( = T("O) T( 0) (2.34)
¥

ﬁi& ﬁj\ W|J7 ZIVR;“n) T3 0”

where summing is carried out over all points of the discontinuity

£
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Since the singular component F.(M does not have practical
meaning, satisfaction of condition (2.30) actually means that the
corresponding uniform, random process does not have discrete
components.

We note that, when condition (2.30) is not satisfied,
realization of process Z'()A) has a still more complicated and
random nature, than in the case of white noise. In the next
section, it will be shown that, by their ergodic properties,
processes which do not satisfy condition (2.30), are not suitable
for our p- ~oses. More than that, certain limitations have to be
imposed on the old derivative functions %(\) . Therefore,
subsequently, we will always assume that condition (2.30) is
satisfied, in which the integral exists, in the Riemann sense.

Up to now, in making all contributions, we have explicitly
or implicitly used the limited nature of functions Fir) .
However, this limitation is not required in proceeding to gen-
eralized functions. Actually, for a uniform (in the broad sense)
generalized process given by the symbolic equality

+0d

X() =L e ™20 dA,

-20

we have

v ei"-ﬂ(h‘f*)

Kx(fhfz):_!o TN .

In the sense of generalized functions, the Fourier transform on
the right side exists (see section 1), for any exponential growth
function

F'O) =T« N)" (2.35)

where m is an arbitrary real number and F,(A) is a function,
integrable within infinite limits. It is evident that, in exe-
cution of (2.35), function F(N) also is an exponential growth
function and, consequently, all the re.ationships, beginning with
(2.23), hold true for such functions. In particular, if, for

b = const > 0,

?(H‘gx ’
then,

K, (5,1 = £8(5.-T)

30



and, consequently, X(£) is a uniform (in the broad sense) white
noise, with intensity b.

The considerations introduced permit the correspondence
between white noise and uniform (in the broad sense) processes to
be expanded, to the case when both processes are generalized.

3. Theory of Estimation of Intansity
According to Individual Realiza:ions

Now, let generalized random process Y(t) be a nonstationary /23
white noise, with correlation function

Ky (tg,t2) = be(t) S(t,-¢,) (3.1)

Then, its Fourier transform (in the sense of generalized functions)
S(f) is a uniform (in the broad sense), random process, with
correlation function Ks(f1 - f2) and spectral density

i 2ast

Welt)= byt = [ ko) €77 Tds (3.2)

Processes Y(t) and S(f) are connected by the symbolic relation-
ships

t+ o0

Y= s() ety (3.3a)

5
S = Z Y(t)e;mtdt i (3.3b)

The theory of obtaining estimates of spectral density of actual
uniform processes according to individual realizations can be gen-
eralizeG to the case of complex processes. On the basis of (3.1)
and (3.2), this permits an estimate of the intensity b (t) to be
obtained by realization of process S(f). Let

[4(4) for I§1&F/2,
S = (3.4)
0 for | 4! >F2
be a truacated realization of process S(f), and

+00

HSF(t)z-L ‘”talf I S(L)e‘z"“ d (3.5)

-Fla
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is its Fourier transform. We form a function, analogous to a
periocdogram.

| Yeplt)[?
[ty ==25— (3.6)

Then, using known relationships, the estimate ¢..(t) of the
intensity bY(t) can be represented in the folloégng form

4+ o0

Pelt) = | - T dy (3.7)

where the actual weight functions 1J,(t) satisfy the conditions

+00

W=, [ ugndt =1 (3-8

and, moreover, they form a §6-form sequence (see section I). 1In
accordance with (1.13}, with introduction of parameter function
F

,{:[(F), Eim i(r):oa

F—OM

RS

we reckon

W) = Lw(lt) = c%w(z‘f—f) ,

iy
fim. %“= lim ATF‘“:OU for tl){’ (3.9)

F o0 P00

where w(t) is any function with an integrable sqguare
+00
I Vwi(t®dt < o0, (3.10)

- o0

which satisfies conditicns (3.8). For such functions,

~ 13 2§t
W(§) = Lim [ urt) e ™ 4t
ELEY !
M 2R ht (3.11)
w(t)=£:~; La’r(nc“ AP

where limits exist, at least on the average.

(O8]
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For ﬁ&(f), in accordance with (3.9), we have

Welh) = W(4/2) = F (4T y),

- - (3.12)
W) =W l-f) , W(0)=1 .

Additionally, we will assume function w(t) is such, that x(f) is
bounded on all axes and has a derivative at zero, although it is
unilateral. In this case, there exists the highest number y > 1,
for which

P L2HZY) _p 4= TGTY)
o0 JaTHT T Gme et Ay, (3.13a)

and, on all axes, - < f < + =,

1-T4) _1- WaTH B
|aT 41 |aT 1? Y (3.13b)

where AY and BY are certain constants. If, for example, there
. " A
exists w'(0) and w'(0) = 0, then, y = 2.
In the relationships presented above, £ and AT are the

effective bandwidth of functions E&(p and 'hQ(U respectively.
It is convenient, for example, to suppose

L=0C [ @hpdi, (Mo=1),

o0 (3.14)
AT:C*..I. wt(t)dt /u{;(o) ,
where the constants are given by the expressions
C,=1/_L TS, € w0/ Juitrdt | (3.15)

The definition of the function wy{t) civen here encompasses all
cases encountered in practice. In particular, when

for 1t <€ 12,

I
wit) =
() { 0 for (¢} > Iz2, (3.16)
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in accordance with (3.7) and (3.9), we obtain the estimate /25

t+aT/2

1
Pt == | I.(7)d (3.17)
ATf:(AT/zsp 3 T ’

practical application of which, by use of digital computer, has
been studied in detail by the authors, in work [17].

In order for the estimate ¢gp(t) to be asymptotically un-
biased and consistent in process S(f) and, consequently, in
white noise Y(t) corresponding to it, certain limitations must be
imposed. First, uniform (in the broad sense) process S(f) should
be ergodic relative to the first and second moments, i.e., the
following relations should be satisfied

| LI’Z A 2 _

L 8l F-gf‘*’* |=0, -
A fla-161 ) 2

pei': g[ 1}7&,&2 S S (+160df — Ks(m)l ]:g.

A necessary and sufficient condition of ergodicity relative to
the first moment is

£
by [ H(0) ds =0 (3.1

Fae0

Concerning ergodicity relative to the correlation function, for
Gaussian and certain other (for example, linear) processes, a
necessary and sufficient condition is

i_P
P@;; F j)K;(S)I*Je =0 . (3.20)

Since, in expansion of spectral function (2.33), we disre-
garded the singular component ¥, for the processes indicated, in
accordance with (2.34), a necessary and sufficient cor.ition of
erdgodicity is absolute continuity of the spectral fu-ction or,
which is the same thing, existence of a derivative, wnich is in-
tegrable in each finite interval (see 2.30). We recall that the
derivative of the spectral function is spectral density Ws(t) of
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process S(f) or intensity bY(t) of white noise Y (t).
With the assumptions made, it is easy to show that, not only
are conditions (3.19) and (3.20) satisfied, but

Jim Ksh) = 0

However, as F > <, in order for the estimate ¢gp(t) to be asymp-
totically unbiased and consistent, an additional limitation must
be imposed on the correlation function (or spectral density) of
process S(f). We suppose that

LIPKpldE <00, 50 (3.21)

By the use of the reverse Fourier transform of the convolution,
the expression for estimate (3.7) can be rewritten in the form

Yorlt) = [ G0p (- E) pop €4y (3.22)
where /26
F2-16!

Yee(6)= 'f-Jf.’i-:(lps el d} for fl2 260 ’

S 4 s(§ +1s1) df for -fle < §<@
(3.23)

‘ T Lem
(1- #) helh) = | L e it

We examine the expression for shifting the estimate Rf¢gp(t)].
In accordance with (3.2) and (3.22),

BlYe®) = E[ elt)] - bolt) =
4o0 ' (3 24)
== [t - Sy ety o

- [ T €y
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We always can select such a w(t), that condition

v

is satisfied (see 3.13, 3.21). Then, on consideration that
~
P W (] < M

on all axes, and with the use of (3.13) and (3.21), as F » «», we
obtain the asymptotic relationships

Thep - ™0 ag ~ (o) $1t)

+ 00 - -i T"
CI T e ™o ~ 55 d),

-od

where &, (t) and ¢,(t) are continuous functions. Since, in
accordance with (3.9),

(ATV F 2 o0 ,

we finally find that, for a sufficiently large F,
L 2
BIY,(t)] ~ (aT)" P, (t) . (3.25)

With the assumptions made, for dispersion of the estimate D[ Y,.(t)] ,
there is an asymptotic formula [22]

cbott) [ 13% ) dt
aTF ’

DY ()] ~ (3.26)

where ¢ is a constant. The cha.uge in AT should be so matched /27
with change in F, that the sguare of the displacement and the
dispersion of the estiriate change at the same rate. In accord-
~ance with (3.25) and (3.26), in this case,

. - -2y
oT= O(F™%)  D[9,1=0(F ™) (3.27)
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It is seen from these relationships that, for g < 1, convergence
of the estimates towards the intensity is very slow and, for

g > 2, further increase in q slightly affects the convergence
rate. In such a manner that the process could be actually
analyzed, the absclute value of correlation function |K_ (o) |
should decrease more rapidly than 1/02+% € (see 3.21) andS conse~
quently, the spectral density Wg(t) of process 3(f) ..r intensity
by(t) of white noise Y(t)) should have at least one continuous
derivative.

We call estimstes considered estimates of the first kind.
Together with them, estimates of the second kind are widespread.
They frequently are called "instrumental," since, in form, they
are a mathematical recording of an electronic spectrometer line
diagram. Let h,_(f,t ) be such an actual function of f (tgp is a
parameter), thaé the Bodule of ite Fourier transform

+

Tott)= Rt ™ gy (3.28)

is an even function

ZAT(tIt°)l = l ZAT(—t)'tO) -

and it differs appreciably from zero, only in a band with effective
width AT around the value of t, equa’ to to and -t Then, an
estimate of the second kind of white noise 1nten51gy is written

in the form

Yesr(t) = I hsr(E,0) | 8t 0]} df (3.29)
where . .
Sarthot) = f Rirl, L) 805 -)dn = fRunlhop, Lasipy
o (3.30)

Here, furctions hpm(f, tG) and hgp(f, 0) can be interpreted as
transient pulse functions of a narrow band filter and a low
frequency filter. With the use of (3.29) and (3.30), for calcu-
lation of the estimate, the requirement of physical realizability
of the filters is not obligatory. As 8T »+ 0, in order for the
estimate 5f the white noise intensity é¢ggp(t) to be asymptotically
unbiased ar.d consistent, a connection s ould be established
between 8T and AT, the nature of which is determined by the same
considerations, as for estimates of the first kind. 1In particular,
the following relationship should be satisfied
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lim, 2T

= 3
IT=0 ST = oo . (-‘“.)

Formulas (3.7) and (3.29) permit determination of the 2stimate
of the white noise intensity Y(t), by carrying out a series cof
operations, to realize uniform (in a broad sense) process S(f),
corresponding to it. However, if the white noise is fixed, it is
impossible to calculate realization S(f) directly, by means of
a Fourier transform, since realization y{(t) is a generalized
function, and its valve is not definite at a single point. In
this situation, in order to give formulas (3.7) and (3.29)
actual meaning, the fact must be used that any generalized
function ~an be oktained, as the limit of a sequence of ordinary/28
functions, if the convergence is understood in the sense of yen-
eralizeé functions (see section 1).

If Yn(t) is a random function with finite dispersion, and
y(t) is any infinitely differentiable function, which reveris tc
zero outside a certain finite interval, then, integral

+ o0

<Yo,t> =_‘J’.\|’(t)Yn(t) dt (3.32)

always exists, in the mean square sense, and it defines a ‘’inear,
continuous, random functional, in basic functional space K, . Let
Yl(t), Yo(t), ¥3(t), . . . be a sequence of ordinary random pro-
cesses with finite dispersion, which ccnverges, in the sense of
generalized functions, to white noise Y{t), with crre -ticn
function

Kyt t) = 6 (t) (¢, -1,

This means that, for each fixed function ¢;(t) frem ¥, , the
sequence of random quantities

(Y‘,‘fﬁ),(Y;,\K),(Ys;*l)r"' (3.33)

converges, in the mean square sense, towards the value <Y, Y >
of a random functional, which fixes the white noise, i.e.,

g‘. zt-(Yn,\r(>=<Y;\f1>- (3.34)

i.
-

In accordance with (2.11), it follows from here that



4400

ne::t 4 Y».,Ya >< Y Yz) —_BJLZ, _I_L\h(tt)\y;(t;) Y,,&h)Y:(t,)Jtthl _

(3.35)

400 400

=] [ yawesbi) S, mt—lm () by (t0dt,

- ol - 08

where y5(t) and wz(t) are any two functions from X,. Reasoning
further, the same ar in the change from (2.28) to (2.29), from
(3.35) we obtain

+ 00 4008

dm ] Y0t Yalt) Y2 () A, dt, =

~o0 “%0~

= [ L vt ) 8(t, - t,) dt,dt,

where y(tj, ty) is anv function from basic space K, . This is
equivalent to the fact (see section 1) that, as m + ® and n » «
independently of each other,

Y, () Y5 (1) —= K (4, £,) = & (10 3 (1, 1) (3.37)

in the sense of convergence of generalized functions. Conversely,
if (3.37) tekes place, and that means (7.3¢) a second equality
(3.35) follows from this, since functions uj(tj)y¢%(ty) belong to
space K,. Then, the first equality (3.35) shows that a limit
exists

c_ﬁ.ZL <YM1*I><Y"'\Y1

and, counsequently, in accordance with (2.10), in the meaa square
sense, sequence of random quantities (3.33) converges. In this /29
manner, fulfillment of relationship (3.37) is a necessary and
sufficient condition for convergence of sequence of random pro-
cesses Yy (t), Yo(t), ¥Y3(t), . . . , with finite dispersion, to
white noise ¥(t), in the sense of generalized functions. Since

the Fourier transform does not disrupt the convergence, from here
there also foilows convergence of sequence Sj(f), S,(f), S3(f),

. « « - where

S, =_‘L (1) eyt (3.38)

towards stationary process S(f), corr~sponding to white noise Y(t).
It is seen from the results obtained that an infinite set of
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sequences of common random processes can be constructed which
converge in the sense indicated, towards cne and the same white
noise.

For simplicity, we assume that white noise Y(t) and all
Y,y (t), Y,(t), etc., differ from zero, orly in a finite interval
(a, k). We introduce the designation

F’?- . + o .
Yert) = § S - [ sty (3.39)
where
| 1 for 1§l ¢FI2,
ck'm‘ 0 for-lfl >FI2 |
Then
fe L i2e w07
Yot=) [ upe™ e gty oo

since, in this case, the integration order can be changed. With
consideration of continuity of the convolution (see section I),
it follows from (3.40) and convergence Y, (t) =+ Y(t), that

mTE(t-7)
Y () s fﬂpiﬁzﬁlw

in the sense of generalized functions. Further, by the use of
the reverse Fourier transform of the convolution of the general
ized functions (see section I) and considering that

‘L gn f 12«;7‘;} ép(”) ’

we transform the latter relationship to

£l

254t
YROE= O L TR AT
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Since a common random function is on the right, convergence
actually takes place in the ordinary s <e. By repeating the
reasoning presented, but for functions two variables, by means
cf (3.40), we find that, from convergence

Y Y, ) — ()50t~ t,)

there follows

/30
_— |
. Y 4 e (- T7)
Ml;‘":: *msf\ -Sf Jt’r(r[ - T) J JI i
In this manner, in accordance with (2.10), we firally obtain
£l 2ayt
Eim. Ylt) ={ Sy - Y.(t) (3.41)

“fFl2

We designate the result of application of operator (3.7) to
realization y,(t) of random process Y, (t) by éngp(t). Tken,
with (3.39) and {(3.40) taken into account, we obtain

Fi2
Y olt)= T JU“ i’ljs‘f’e IIdH dy = (3.42)

+oc ‘
=4 [ugit- 7“ )——4———5“,;5( 1) dq' i

-o3

It follows from (3.41l) that, as n + =, the finite-dimensional
distributions of probabilities of processes Y (t) converge to
finite-dimensional distributions of process Y..(t). The question
arises: under what condition does convergence of distribution
function 7T (x) of estimate ¢,gp to distribution function 9x) of

estimate ¢SF' for each fixed t, flow from this? We note that,

from convergence of the distributions at each point of continuity
of the limiting function, convergence of the moments still does

follow. 1In our case, the limiting estimate ¢SF has the first two

finite moments and, in order for

4 o0

lim | x 4T3 = 60 04) - lim { x*d T 020 = GL1R )

w-sa0 -00 ~ >
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permissibility of transition to the limit under the integral sign
is required.

Now, we will suppose that all processes Y, (t) have continuous
realizations yp(t), with probability 1. This case is of the
createst interest to us, since, for example, the majority of
processes which describe oscillations of physical or mechanical
systems have such a property. Having substituted the square of
the module, in the form of the product of the complexly conjugate
quantities, in formula (3.42) and by changing the order of inte-
gration, we see [13] that, for fixed t, ¢,gr is a continuous
quadratic functional in the space of all functions, continuous
in (a, b). Then, in accordance with the known theorem [7, 81,
for convergence of distribution of estimstes ¢pgrp to distribution
¢gp, with fixed t, it is sufficient that processes Yn(t), for all
n and ty, to, satisfy the condition

LIt = Yt )“] ¢ Hit-tad"'F (3.43)

where a, 8 and H are certain positive constants. In order to

more realistically represent the nature of these limitations, we
note that condition (3.43) is fulfilled, for example, for a = 2

and 8 = 1, when correlation functions Ky,(tj, ty) of processes /31
Y, (t), on line t; = t, and, consequently, everywhere, have the
bound ed, compositederivative

O Ky (t,,t,)
St < (3.43a)

-

i.e., for processes, which are differentiable in the mean square
sense.

Of course, condition (3.43) is not necessary. For example,
the model of the random process, which we use in the succeeding
sections, does not satisfy this condition. 1In the partial case
of a2 determinate amplitude, we give this process with the
equation (see 4.2)

Y. (t) =D, VE 1) cos Glt), (3.44)

where G(t) is a real, uniform, Markov process, b, (t) is a real
determimte function different from zero only in the interval
(a, b), Dn is a positive parameter dependent on n, in which
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lim D, =00 , lim Bm . (3.45)

w00 - - a0 - {
m2e Da

Calculation of the second and fourth moments by the use of the
probability of transition (4.6) gives

Wt -T2
VG YAE) = Kyt 1) = VLR 22
J% %. J Du It - tﬂ
YY) = Kyt ta)= Bt [N 4 ' : (3.46)

VYY)V = R tIE GGt 2 .

{1 N Le— z%nltz“tgl}e'%n(|t|'tz.l+lt3_ th\)
. 2 .

It is easy to see that Y, (t), Y, (t), Y3(t), . . . form a sequence
which converges to whlte noise, w1th 1nten51ty bY(t), since, as
n > o (D -> m)

D o~ BnlT)
z ¢ — 3(x) (3.47)

and, consequently,

K, () — L t)S-t) K (bt — b () Slt,-t2) (3.48)

For fixed t, we calculate the mathematical expectation and second
moment of the estimate ¢nSF(t). From (3.42), we obtain

+ 00

L ﬁ
=4 -7)
&1 fusrlt)] = £ | upt- D[ J J Ky 00 00) - (3.49)

ﬁj m) sin 7 F(T-7,)
w(T-9 T -1, d('av’t] j

~
(V)
N

and

|
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ENueel D] =—H me ADACISAR

ceed
. sin FF{T,-1) sim FF(T-4,) (3.50)
L 6lp gy 2550 smattien

. sin TF(K:.",S) SL'\ IIF(T; 'h)
T (Jo-15) FYe- T4 dndn, Jqsdﬂu} 74y,

From the properties of the functions included in these formulas,
it follows that, with the assumptions made earlier, one can only
proceed to the limit as n + =, under the signs of the first
integrals in these formulas. We substitute the expression for

Yn(nl' no) from (3.46) in (3.49). Proceeding to the limit as
©, we obtain

+03

B 609,001 = {agtt-p| HM. (3.51a)
. a

c.:n"'rf'(f-'h)
AT dvl ] A? = &6 fel)]

Since the integral stands inside, with a Fejer kernel [18],

considering the properties of function Wylt) as F > =, we finally
obtain

L b, BU0at)) = Bty (3.522)

In a similar manner, by substitution of the expression for the
fourth moment from (3.46) in (3.50), we obtain

+00 400

b 601811 = | [ttt g

‘ e (3.51b)
.{UK,(*],)LF;FT(,H%‘J'I:]'

{ S EEER Bt 4o T g dy, = 6119,

and, correspondingly,
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bim i S (D ] =6 (3.52b)

oo n— 00

or, considering (3.5Za)

&m Lim SD[“P.sr(t)] =0 . (3.52¢)

P-OM n - oo

It is seen from the first relationship of (3.46) that, on the

line t, = tys correlation function K n(tl, t;) does not have a
mixed derivative. In this manner, in the example being considered,
despite the fact that condition (3.43a) is not fulfilled, not

only does the probability distribution of estimates ¢ op con- /33
verge to the distribution of estimate ¢gp, but the flrSE two
moments, at least (see 3.51). Estimate ¢n F(t) of the white noise
intensity is asymptotically unbiased and consistent in this case
(see 3.52).

In all the formulas presented, the order of transition to the
limit over n and F is significant. This holds true, not only for
the example, but in the general case. It is seen from formulas
(3.49) and (3.50) that, if initially F =+ «, both limits revert
to zero.

In this manner, for ¢,gp(t) to be a sufficiently effective
estimate of intensity, the follow1ng condition must be fulfilled

A R (3.53)

.{z‘ =aT « T,

where, in the general case, 1/9, is on the order of the effective
length of the correlation process Y, (t) and can be estimated, for
example, by the formula

re
1 Ja',[ KY.(tlltl)Jtldt:. (3.54)
‘ibnN (g“"):[K,_(t,t)dt

In the fregquency region corresponding to Y (t), random process
S, (£), in interval [f] < Dn, is sufficient?y close tc uniform
by properties, in the broad sense of the process.

The resulting estimates ¢pgr(t) of white noise intensity
permit generallzatlon. In fact, if, in determination of Ynsr(t)
(see 3.39), in place of ¢ (f), use is made of any function

+

WADE Lﬁ,,(t)e‘”talt (3.55)
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where hjy(t) is the transition pulse function of the low frequency
filter ?not obligatorily physically realizable), permitting change
in the order of integration in the relationship

+00

e, .
Yorlt) = [ ] Y0 €5 ag] e -

o a
o

?Y,(p hit-Ddy

(3.56)

the entire subsequent course of reasoning remains in force, and
we obtain, for the estimate ¢,gp(t), the formula

Rult) = [ugte-p| Toapwp e g4y -
= : (3.57)
- H, “&(t‘T)t 07 ﬂ,(}—»p dy ,a” ,

where F is the effective filter bandwidth in the frequency region

+ 00

o
F = U,?(o),L VR df (3.58)

We note that, in derivation of all relationships for the estimate /34
¢ngr (t), we assumed the white noise Y(t) and processes Y, (t), -
Y2§t), etc., reverting to zero outside the interval (a, é). It is
evident that the same results are obtained in the case, when the
random processes indicated decrease sufficiently quickly to in-
finity. If the processes do not decrease, realizations, abridged

in interval (a, b), can be examined. 1In this case, the additional
error of the estimate will be noted, only in a small vicinity of

the ends of the interwval, on the order of the effective bandwidth

AT of weight function wj(t),

By use of the estimate of the second kind (3.29), an analo-
gous theory can be developed for them. We are limited here, by
the fact that we present the final form of the estimate of white
noise intensity. With the use of the inverse Fourier transform
of the convolution, from (3.30), we have

o0

Seld t) = [ B (¢, tax(ble

REUTS (3.59)

By substitution of (3.59) in (3.29), we finally obtain
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\.&S'I‘(t) =+r£57(+;0) ‘TE Ka’!‘('?:t) S(f ‘7)‘]7\2&} =

(3.60)
_J hsr(§,0) IL AT(;,t)x(peq ”ng df .

This estimate of the second kind has the same structure as the
generalized estimate of the first kind (3.57), up to the tran-
sition to the tire region. In turn, the estimate of the first
kind (3.57) has the structure of the estimate of the second kind
(3.60), up to the transition to the time region. In this manner,
the estimates of the first and second kinds are dual, with respect
to each other. It follows from this that all properties of
estimates of the first kind can be reformulated for estimates of
the second kind. From the fact that an estimate, for example,

of the first kind for intensity has the same structure as an
estimate of the second kind for spectral density, total symmetry
of f and t follow, in obtaining estimates of the guadratic char-
acteristics, by averaging over these variables. In other words,
if random process X(t) is such that, in the time or frequency
regions, it permits averaging over a large interval and, conse-
quently, averaginj can be carried out in a small interval over

a different variakle, for such a process the methods examined
permit estimates of the quadratic characteristics to be obtained
with small displacement and dispersion.

Now, let an actual, nonstationary, wideband process X(t),
with correlation functlon K 4tl, ty), be given. In accordance
with the precedlng, for each “rhite noise Y(t), with correlation
function Ky (t = bY(tl)d(éq - t2), there is an infinite set
of sequences Y (t? Y £y, . . '\ (t), . . . of common random
processes, whlch converge to it, ghe sense of generalized
functions. We examine in greater a?tail, which is important for
the future, the question of the possibility of inclusion of a
given broad band, nonstationary process\ in the sequence Y, (t)
(n=1, 2, . . .), as a term in it N

AN

X(t) = Y. (1),

and also, how o estimate the closeness of X(t) to white noise
Y(t).

As before, we will assume that all the processes considered
differ from zero, only in a finite interval (a, b). We saw
(3.35) and (1.38) that

&4 £
N LR AT AR IR LA § AN ACARATATL

nae0 a

3.61)
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where ¢, (t) and Y, (t) are any functions of basic space ¥, . /35
Further, let h(t; g) ke a transition pulse function of a certaln
linear system. Subsequently, for simplification, we will assume
that h(t, &) is an infinitely differentiable function of both
arguments, integrable over the entire plane (t, £), at least with
a square. (For physically realizable systems h(t, £) identically
reverts to zero in the first quadrant, and it undergoes a dis-
continuity at its boundary.) In many cases, the linear systems
encountered in practice satisfy this requirement. With the
assumptions made, for a fixed t, any h(t, £) can be represented
as the limit of a sequence of functions of X;, converging to h(t,
£€), in any finite interval, uniformly, together with the deriva-
tives of any order {2]. It follows from this that relationship
(3.61) remains true for any two hl(t, €), holt, &), i.e.,

Lé
{L:} Jl KY.(I‘)Il)t (tl;‘{’) e‘t(t’-’T‘)JTIdT‘- = (3.62)

¢
= [ 0G0 Rt TO Rt T T,

It is evident that, for any sequence Y _({), this relationship

(to the point, like (3.61)) cannot be written, for any finite n,

in the form of an approximate equality. Actually, for any corre-
lation function Kyn (€1, &3 ) » however small the effective correlation
length, such a sharply chaﬂglng h. (t, &) and hy (t, &) can be

found, that the left side will differ as strongly as desired from

the rlght This means that the closeness of Ky » E9) to Ky (£,
Ep) = bylE)6(5y ~ &,), makes it sensible to con51 er %he derlved
set of gran51t30n pui se fvnctions only in a definite way.

We separate this set of conditions, so that each of the values
in it
" &:z(tt ;tz » ‘zi )I&)"n

is bounded by its constant, i.e.,

“ e"ﬂ.({'ntli II;IL‘)"m< C"\' ’ (3_63)

where
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DBy, tes 30,300, = max{ iRyl | ?‘,usl, iR (3.64)

Raltitei To%) = b/t 30 bt 30
K :;7f‘n K")- 7§mﬁu (3.65)
IR RS A SN OYA Y A

With the assumptions made, the limiting transition for the non-
negative function

T
Ayt ) = U&[ Ky (30, 3) Ralty, TR, 1) d, d, -

¢ (3.66)
LB LR ATRCNS APTN
can give the estimate [6]
Avlti,ta) € Coll Ralte,te; 7, T, (3.67)
where the constant C is its own for each Y Further, in an

analogous manner, it can be shown that, in tﬁe case being con-
sidered, C n>0 uniformly in the separated set, i.e., for any
e >0, sucg an N can be found that, for n > N,

By (t,, 1) € €C, (3.68)

where C, is the constant from relationship (3.63). In this man-/36
ner, in the set of transition pulse functions separated, for a
sufficiently large n, the limiting relationship (3.62) can be
replaced by an approximate equality.

We now turn to the question of inclusion of a given non-
stationary wideband process X(t) in the sequence Y _(t), converging
to white noise., It should immediately be stated tﬁat, not con-
cretely defining process X(t), it is practically _.mpossible to
answer the gquestion and, what is more, to construct the specified
sequence Y _(t), including process X(t) in it; therefore, we limit
ourselves Qo qualitative considerations, based on the approximate
asymptotic relationships, obtained for processes X(c), with a
very short correlation length Bo. We will assume that

P «Tuamd @0 < Ty, (3.69)
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where T, and T, are characteristic intervals of change in dis-
persinn”of equal Kx(g, £) and of pulse function h(t, §), of a
certain set, fixed by relationships of the types (3.63) and (3.64).
We introduce the designations

J":—'(’I,"'iz)/z , \’3:'{1«71

’

E(“'P)ZK*(“%»&-%) : (3.70)
Then.
66
K (t“t :JJK (73 al"(tlyfi R'(t217?- ditait
—‘JZP‘F’; oAt 4 DAt 4 §) J‘““P!p, At DR (3.71)
o+pl2 a-$2
g .
~ | hit, DA, J )’E(.L,F)A?]JL -
G -(L-o
4
= [ Rt DAt ) b dd
where &

= ) Kw,ed
-(414) Pl oe (3.72)

K, (ty, t, ) is the correlation function of the response of a
system w1%h pulse function ! :, &) to the action of process X(£).
It is evident that, for actual processes with a small correlation
length B functlon b,(a) > 0. In accordance with the preceding,
this aprox1mate equaflty will be true, for all pulse functions
of the set formed. Of course, function b_(£), defined by relation-
ship (3.72), is approximately interpreted as the effective in-
tensity of the nonstationary wideband process considered X(£) or,
in accordance with (B.5), as have the instantaneous spectium of
this process Thus, K (El, 52) can be represented approximately
in the follow1ng form

Kelog) =Ko e = b g, p) (3.73)

where

50



Wi, p) = ,_lK‘(“'P) LACH: (3.74)

AR
It is evident that, for any a, /37
i (3.75)
Juwpr dp =1 :
We introduce the sequence
W, p) =L.wi (4, Lop) (3.76)

where fh + ©® as n + ©, In accordance with the results of section
1, we see that, for any fixed a, function wuj (o, B) forms a §-
form sequence, in which all functions are normalized, i.e., they
satisfy the same condition {3.75) as w_(a, 8). By selecting .

; X
so that &, = 0, for n = m, we suppose

Ky (3030 = Ko (48 = LWwy )= b d, il Lop) | (3.77)

It is seen from relationship (3.76) that, as n + o ({, » =),
function wj (o, B8) stops depending on &, and we obtain, in the
limit, )

Ke(ToTo) = Ky (4, 8) =55 beld) S(p) (3.78)
in the sense of the generalized functions. According to (3.73),

Ko(F, ) =Kol p) = BlOWLp) = Ky (T2, 1) (3.7¢)

By the use of the approximations adopted, the following can be
written

¢ {
JK,,(I.JJ H30) $(10) dTudy, = !UU[ fl

2

P. LY

dé )0 . (3.80)

In this manner, functions K (Cl, 52) are at least asymptotically
positively defined and, consequently, they can serve as corre-
lation functions of certain random processes. It follows irom
this that, in accordance with (3.78), the necessary condition is
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fulfilled, for existence of seguence of random processes Y ()
convergirg in the sense of generalized fur<tions to a certain
white noise Y(£), in which vp(£) = X(§).

We now consider how the clus-ness of process X(t) to the
limiting white noise Y4 can be estimated. In solution of
practical problems, we .sually are interested in the acticn cf
process X(t) in linear systems, described by one or more iramilies
of transition pulse functions, whic!: depend on a series of
parameters. In the majority of cas:s, tlre carrier frequency f
and the ~ffective bandwidth of tte frequency characteristic of
the -system Afg serve as these parameters. .he transition pulse
func: ons used hfo(t, & Afo), as a rule, are bounded, and growth

of the modulus of their derivatives with increase in order is
completely defined by parameters fg and Af,. Therefcre, in order
to include the family of transition pulse functions considered
in a certain set (3.63), quantities fg and Afy must be bounded.
The characteristic interval T, , in which the transition pulse
function changes noticeably, can be estimated Ly the relation-
ship

T’\. ~ an«{(/}- ] 1/°}°} . (3 81)

In derivirng formula (3.71), we sfaw that,; by fulfillment of the
inequalities

Po < T or af o> max{fo, 8.3,

' 3.82
T, » B0 or Tx » /4fefs, ( )

where Af ef is the effective width of the amplitude spectrum /38
of the process, and nonstationary wideband process X/t) i= close
to white noise, with intersity b_(t) (see 3.72). Closeac. . is
understood in the sense that its“action on any linear system with
a transition function belonging to the set formed, wiih sufficient
accuracy, deter .ined by formula (3.68), is similar to the action
of the equivalent white noise. In this manner, these inequalities
(3.82) agive the qualitative conditions of closeness of wideband
process X(t) to the limiting white noise and, consequently, the
truth of the approximate expression rfor the correlation function
of the response of system (3.71la)

[
Kot t) = Jhit, O R(t,,0) G dy

with a sufficient degree of accuracy. A quantitative refinement
of these inequalities is given by means of study of concrete
model processes in the subsequent sections.
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We note *n conclusion that the condition of normalization
of all funccions w, (a, B) (see 2.76), in representation of the
correlation functions of wideband process (3.73) is very signifi-
cant. 1In fact, we can write

K30, T) = bd) Tp (4, p) (3.87)

by meny methods, with the use of different ¢-form sequences w (o,
B). As n » », each guch sequence will correspond to its sequence
of ra.,.dom processes Yn(E), converging to white noise 2(g), with
intensity X(E). If the sequence is not normalized, i.e.,

, (3.84)

then, by carrying out normalization, from (3.83), we obtain

Ka(30,8) = build) wi it p)

bucld) = 6(0) 4, | wisityp) - Weald, 81/ 4.
“{:’:;\. anx(“-) = g‘(i) .

By substitution of this expression for KX(EI, Ez) in (3.71a), we
obtain

{ A
Ki(te,ta) =9, [EOA, Rt L)dd

where q_, in principle, can he any numbar. Thus, for the function
x(a) itself, relationship (3.71a) is not fulfilled, and this
méans that wideband process X(£) is far from the limiting white
noise Y(£) with intensity b_(a). It is evident that the process
X(£) muct be included in a §equence, in which the limiting white
noise is close to wideband process X(£). Fortunately, the
.heory of estimation of white noise intensity stated above shows
that, if we analyze the realization of a certain wideband ; ocess
by means of the methcds developed, we always automatically obtain
{(good or poor, depending on conditions) an intensity of precisely
the white noise closest to our process.
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CHAPTER I1
APPLICATION OF ESTIMATES TO ANALYSIS OF
NONSTATIONARY WIDEBAND PROCESSES

4. Modeling of Nonstationary Random
Processes

We consider a family of nonstationary random processes, which/39
depend on a series of parameters, and we show that, in defini-
ticn of the relationships between these parameters, processes can
be obtained, as close as desired (in the sense of section 3) to
nonstationary white noise. Moreover, we introduce the necessary
formulas for calculation of individual realizations of all possible
wideband noises, which are nonstationary and wideband to differ-
ent degr=es.

As a model random process, we take an expression of the type

X () = RIDH(E) cos(2nf,t + Glt) , (4.1)

where t > —» is the time, £ 2 ( is a fixed carrier frequency,
R(t) is an arbitrary, dimensionless, determinate functior and H(t)
and G(t) are random processes (amplitude and phase), with reali-
zations h(t) and g(t), respectively. Amplitude H(t) has the
dimensionality of process [X], and phase G(t) is a dimension-

less function. Realization x(t) of crocess X(t) is written in the
fForm

x(t) = R(E) R(E) cos( 254, +g(8) | (4.2)

In order to have the possibilitv of constructing realization
x(t) from point to point, with At intervals, we take known,
stationary, ir3lependent Markoff processes as H(t) and G(t) [16].
The conditional probability of transition of the amplitude
fluctuation

| 1 Litet) - m(t, 1)
W\M{VA\T,hU)Z?iGﬁT?exf{‘[ ZGfW)L] } (4.3)
’

- ng £ z_(t&;.)( f")o,

where
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mit,7) = h(t)exp(-pi), (4.4)

~2

$ () = T4 - expl-gpi)), (4.5)

r >0 and p > 0 are fixed parameters. The conditional probability
of the phase transition

%{{1 + 2:2; e_ezﬁcos[ Egeeen) -3(t))]}

ijﬁ'THT,%tH= for D¢ §it+3) < 2%,
0 for g§lt+T)<0 w §(t+7)>2%,

where q > 0 is a fixed parameter.

As 1T + », the conditional probability densities are con-
verted into stationary, unidimensional distributions

{ Bite)
W (ki) = = exd"(’ zrzz) , (4.7)
- 00 £ K(f)( + 00,
ii‘% for 0¢g{t)¢2w,
)= (4.8)

0 for §B)<0, §lt>2w

since, for a Markoff process, knowing the probability of tran- /40
sition and the unidimensicnal probability, any n-dimensional
distribution density can be written, it is easy to show that all
n-dimensional distributions are uniform over time. In this manner,
processes H(t) and G(t) are stationary in the narrow sense.

We note in passing that, if function R(t) = R = const, since
processes H{t) and G(t) are independent by definition, and G(t)
is distributed uniformly in the interval [0.2 7], arkoff process
X({t) will be stationary in the narrow sénSe. The mathematical
expectation, correlation function and spectral density, in this
case, have the form:

(4.9)

2 Ut -(p+q)ItTl
K ()= R 3¢ P4 s 27§, T , 14.10)
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= R (pe 1 1
W, (P =R 1){h,(5_m(m)z +""‘J'f~)'+(p*1)‘}. (4.11)

To avoid misunderstanding, we note that the definition of spectral
density of stationary processes given in Chapter I (2.5), which

is true for both positive and negative frequencies, differs (is
twice as small} from that which we use in practice, and which is
true only for positive frequencies. However, we will not change
the designation Wx(f) for spectral density. Just as was done in
[17], the ergodiTity relative to the mathematical expectation

and the correlation moment of stationary process X(t) can be shown.

In the general case, there is no difficulty in calculating
the mathematical expectation, correlation function and instantane-
ous power spectrum:

m,=0, (4.12)
K -3, 6+ %) =RiE-DRUEB T ¢ TV ag 2mir, (4.13)
W50 = 4R JRE-0 F €TV casiaapcostonge de | (4.14)

We now consider conditions under which processes (4.1-4.8)
are close to white noise, in the broad sense. We assume in
formula (4.13)

=p+rq =9 . (4.15)

The quantities r2, p and g have different physical meanings: r2
is the dimension of power [X2] and p and g are frequency dimensions
[£f]; therefore, equality (4.15) should be understood as

IR =w(p+r) 141 (4.16)

where k is a proportionality factor, having the dimension of the
spectral power density

[«l=0[X%X*1}] (4.17)

subsequently, we will consider that @ has the dimensions of /41
frequency, and we will use the equalities
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"lz:Ki), P:m_% 1 (4.18)

where the value of coefficient k will depend on the concrete
physical scales of values of functions X(t) and frequency f.

In accordance with the result . .ted at the end of section
3, in order to find the white noise intensity, tc which the model
process converges, as 9 + «, the correlation function must be
represented, in the form of the product of a simple function and
the normalized element of the §-form sequence. By calculating
the integral

a* " _aml D
55—] €" eos 2nfuT dT = Preqaril

in conformarce with (4.13) and (4.18), we obtain

- - - ~ Kﬁl (4.19)
K-t 3)=RUE-2IR(E+2) oo v
where

oy Dbt 9 ~2I%
L&(‘)‘"—ﬁi‘— 2 0 co$ 27}t

is the normalized element of the 6-form sequence, i.e.,
+ o0
wW—9 , [wwdr=1{.

Since §-form function (1) differs from zero only at small ]

T 4.1 D RYH)
K (t-%,t+ %)=Tmu&(ﬂ=g(ﬂ%m , (4.20)
2xDR)
\J‘L(‘S’,t) = 2g(t) = :'bz‘ilq'ﬁ"'}f (4.21)
and, consequently, function Bt) = DR/ (D + 4ot 52 ) is the

intensity of the nonstationary white noise, which is obtained from
the initial model process (4.1-4.8), by fulfillment of condition
(4,.18) and as & > =,

We attempt to determine what the condition & + » meaps in

practice. Initially, we examine the case, when R2(t) = R4 = const,
i.e., the process is staticnary. By turning to the formula
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for spectral density (4.11), with (4.18) taken into account,

_ 2 22 %l
W) =« R G- D T (e } (4.22)

it is easy to show that the value of P is proportional to the
effective bandwidth Af.¢¢ of process X(t). Actually, for a spec-
tral density which is svmmetrical relative fH' we have

Afotr = ‘\(;:m (4.23)
whexe
6 = «R*D/2 (4.24)
is the dispersion of the process, and /42
Winax = Wilh) =« R? (4.25)

is the maximum value of the spectral density. From this, Af g™
/2 ., The spectral densities of wideband processes have a strongly
nonsymmetrical shape relative to f; therefore, the effective
band for them is approximately half as large

D
Af ~ =
ff 4
€ (4.26)
and, consequently,
. 2«AR"
W‘(}) -‘-me —~ D+ 1‘7‘,;5.‘! . (4.27)

It is known that wideband processes are defined by the condition
AMorg 2 fH' or, in our care,

D44, (4.28)

In particular, for f,, = 0, there will be a large band process X(t),

at any 2 > O. H

As sho1ld have been expected, it is seen from formulas (4.24)
and (4.26) that @ » « entails an increase in dispersion and
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broadening the effective band of the process, with unchanged
intensity 8= «x@R*/(D*+untyl) .

It is evident that, under actual conditions, the degree of
closeness of wideband process X(t) to white noise, in the frequency
region from 0 to Af ¢f, depends orn the relationship between the
duration of observation of the process (the characteristic time
scale of the problem) T, and the time correlation 8g3. This re-
lationship can be expressed in the form

P < Ty . (4.29)
By somehow defining the time correlation Bg, for example, as

K, (lx) -l _
K“w, =0 " cosd2nbt < E (4.30)

for all T 2 B,, where ¢ >0 iSgome small number (¢ « 1), a
dependence can be obtained between parameters @ and the time corre-
lation o

=4 914
B = D &(6). (4.31)
As D > o, BO + 0. Condition (4.29) takes the form
49 (4
m&(e) « Ty (4.32a)
or, with (4.26) taken into account,
! { .
a3 «T, . (4.32Db)

eff

Finally, (4.18), (4.28) and (4.32) give us the relationship for
selection of the necessary models from the entire family of
processes (4.1-4.8).

In the general case of nonstationary noise, relationships
(4.18) and (4.28) are preserved, and quantity T_ in formula (4.32)
takes on the meaning of the characteristic scale of the non-
stationary behavior cf intensity b(t).

In section 6, we report further explanation of the
practical content of condition (4.32), as well as study of certain
other properties of model and actual noises, and here, we /43

proceed to construction of individual realizations of model
procesces by means of digital computer.
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5. Obtaining Realizations of Model Processes
by the Monte Carlo Method, by Means of
Digital Computer

To obtain individual realizations of random process (4.1-4.8)
in time interval 0 S t £ T, we use the normal procedure of the
Monte Carlo methed [3]. Let At be the digitization step of
process X (t) and n be the number of points of realization of the
process in interval T = nAt. Realizations of the amplitude H(t)
and phase G{(iL) fluctuations and process X(t) at discrete moments
of time 0, At, 2At, . . . , (n - ?)At, are designated, respec-
tively, hj, 950 X3 (i = ; » + . D).

Tre unidimensional density distributions, with (4.18) taken
into account, are written in the form:

_ 4 b
Wtk = o exp(- 5.5 ) (5.1)
-oo<&j(+oo,
(5.2)

% for Degcaw,
wWly) = . '

for 3;'(0: 34’ >2%,

and the conditional probabilities of the transition will be:

1 (&-u-m-f}
Vlbyalot k) = g expl - S | (5.3
-00 & ‘-,1<+ao, *
where
m;=hjexp(-12-9)at) , (5.4)
6p =x@(1- exf(—Z(‘-b-wAt)), (5.5)

Lt ﬁ e"‘v‘tcos[t(gj,‘— )
'Ua(jp;\ot,ﬁj)= for 0¢jus €27, (5.6)
0 for 9,<0 , 8 >27
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The amplitude fluctuations have normal distribution (5.1)
and (5.3); therefore, calculation of sequence hj can be carried
out as

{t=vgf§. ) RJ =VJS‘ + RJ_‘m-

J ? j=2lsl "‘1“')

(5.7)

where v; is a sequence of independent pseudorandom numbers,
obtainea by programming, which are normally distributed over
interval [0, 1].

For calculation of sequence g; for j = 2, 3,..., n, the con-
verse of the known theorem [3], on tran&formation of random
quantity G, with assigned distribution pattern w(g), to random
guantity P, uniformly distributed over interval [0, 1], can be
used

G
P =_Lw(g)d3 . (5. 8)

The standard procedure for plotting numbers 95+ with a fixed /44
distribution pattern vg(g-+1|At, g-) from a” sequence of pseudo-
random numbers Ps; (obtained just like vy, by programming),
uniformly distriguted over interval [0, 1], consists of solvtion
for 95+ of equation

Ry | (5.9)
P = itz g e csthg-pinl dy jeas,m.

By taking the integral, we obtain the following transcendental
equation, which can be solved digitally for each 95 for example,
by the secant method

.=,L .Lm -t"ﬁlt . [‘9._3._ .n[ Ny
% xhtEge (sniizdi) A (5.10)

?
i=2,3,...,n.

By adding "¢ the sequence obtained g5, 93, . . . , 9, the value

$.=270y , (5.11)

we obtain the fullowing final expression, for realization of x(t)
of random process X(t), at discrete moments of time
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x; =Rjh;cos[2nf,at(j-1)+ 9,1 (5.12)
J=1,2,3, ...,n

where Rj are values of function R(t) at moments of time 0, At,
2At, . T ., (n - 1)At.

To obtain different independent realizations of the same
process, it is sufficient to change number %, of the initial
pseudorandom number Pj; and number my of the initial pseudorandom
number vj; simultaneously, in the digital computer generating
programs, by a quantity larger than n:

b,>l+n |, miom, +n . (5.13)

We assume that programs which generate normally distributed numbers
v+ and uniformly distributed numbers are independent. In particu-
lgr, while in the program generating normally distributed numbers,
the sum k of sequential numbers P; are used, first, number My
should be selected from the condition

m, > (l.+n)/x (5.14)

and, second, to obtain another (independent) realizaticn of numbers
271 and my, the following conditions must be satisfied

b>(moen)e ;o mys(lien)/e (5.15)

A program for calculation of normally distributed pseudorandom
numbers, in which number k = 20, was used in this work.

A few words on selection of the digitization step At and
parameter g. The digitization step should be selected from the
condition

|
ot & 5 , (5.16)

since, in changing from the continuous process to a random se-
quence, superposition of the spectral densities on each frequency

f takes place, at points (k/At + f) and (k/At - £f) (k =1, 2, /45
. .., »). For a wideband, random process, with discrete time =
value 1/(2At), the highest ("infinitely" high) frequency has
meaning, but, as was shown in section 4, guantity %) has the same
meaning; therefore, it is sufficient to take
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Atzz% : (5.17)

The parameter should be selected, so that the value of
2(D - g)At is on the order of unity

2(D-g)at=~ 1, (5.18)

since, otherwise, dispersion 02 (see 5.5) of the amplitude
fluctuation turns out to be very small, i.e., the total level of
the realization will, for a long period of time t, depend on the
initial value of the amplitude h, (see 5.7). Consequently,
process X(t) will have poor ¢€rgodicity with resrcect to the
correlation moment. An example, in which 2(2Q - g}At = 0.04, is
presented in Fig., 1. The estimate cf the spectral density, cal-
culated with realization length T = 100 sec and averaging interval
Af = 0.1 Hz, which usually gives good results (see {17]), is
strongly understated. To obtain a correct result, a realization
of significantly greater duration must be used. We also note
that it is advisable that not too small (on the order of 0.1)a
value of gAt be taken, since, otherwise, the series over % in
formula (5.16) will converge slowly. It is clear that this dif-
ficulty is not fundamental, but computational.

6. Practical Questions of Similar
Transformation cfWideband
Processes

In the solution of practical problems, connected with analy-
sis of the frequency-time structure of random processes and their
actions on dynamic systems, the numericai values of the following
basic characteristics will be known ahead of time, as a rule:
effective bandwidth Af.¢¢, characteristic scale of transiency Ty
and the actual limits %or the region of permissible values of
process X(t), for example, for normal centering processes, the
value of 3 o4.

As was noted in section 4, the basic qualitative condition,
under which a wideband process (Af g¢¢ >fy) in interval T, can be

approximately considered to be white noise, in the frequency range
from £ = 0 to f = Af,¢¢, has the form

ﬁﬂ << TX (¢.1)
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kg4, The time correlation By for/46

)~ . .
%"ﬂﬁa*‘ﬂﬂ ¥ wideband processes is in-
2.0F versely proportional to the
bandwidth Afeff
75 Po=AZE . (6.2)
T eff *

A 1s a proportionality factor,
which, for mod:l processes
based on (4.26) and (4.31),

is given by the formula

za%

A=t0(5) (6.3)

and it is on the order of
unity. It is clear that
formula (6.3) can be used
for the majority of actual
processes.

Fig. 1. Estimate of spectral den-
sity, calculated from realization Lo
of model narrow band process, Condition (6.1) takes

having "weak" ergodicity relative the form

to correlation m9men§ (At=0.1 sec,

=1.0, r2=1.0 kg“/cm?, p=0.2 Hz, Tiafee»1 . (6.4)
g=0C.25 Hz, £=0.7 Hz, T=100 sec,

Af=0.1 Hz, R,=20,000, m0=l); 1. Subsequent1 we will explai
estimate ¢X’I‘QQ’ 2. theoretical tﬁz ggaiticﬁi contexlut of this
spectral density Wy(f). relationship by examples.

Now, we give attention to the
fact that, under this condit.on, no value scale of function X(t)
is included. Therefore, we will call the two random processes
similar in the spectral sense, if they have identical dimension-
less coefficients

P1=T1Afeff ) PZ:*"/Afeff (6.5)

regardless of the scale of values of these processes.

The model random processes considered in section 4 can well
approximate actual processes and, consequently, they can be used
for deve.iopment of methods of selection of the optimum parameteres
necessary for analysis of experimental data. In order tc com-
pletely define subsequent reasoning, we will consider that the
time is measured in seconds (sec), the frequer.cy in Hertz (Hz),
and that the random processes are oscillations of gas pressure,
measured in (kg/cm<).
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We present the example of a model wideband noise, with
specification of all the quantitative relationships between its
parameters, and we consider the question of transformations.
which are similar in the spectral sense, of the parameters
this noise. For simplicity, we use a stationary noise
(R(t) = R = const). Let it be known that the effective bandwidth
of the random noise is

AfeffNI.38Hz-I.90Hz. (6.6)

and the minimum characteristic time scale of the problem is
reckoned in tens of seconds

T,( ~ 20 sec~- S0sec. (6.7)

We also assume that the approximate value of the m=2an square level
of the oscillations

G, ~ 0.7kg/cu? - 0.8kg/cH? (6. 8)
and the mean square value of the oversnoot distribution
Gg ~ 1.85 kg/cu’ - 2.00kg/cu? . (6.9)

are known. It is required thac a noise model be selected, of

type (4.1-4.8), and that the extent to which it will be close

to white noise in the interval Tx and in the frequency rates from
f =0 Hz to £ = A ¢fHz be determined.

First of all, by the use of (4.26), we obtain

= 5.5 HI
2 z (6.10)

In order that, in the interval [0, Afeff], the spectral noise
level be close to a constant value, in accordance with (4.28), we
use

fu = 0.7 bz, (6.11)
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The digitization s.ep At, on the basis of (5.17), will be /47

rt = 0.1 (6.12)

Further, from (4.24), we obtain the value of the freguency
average intensity

Bk = 20 kg* (6.13)
5) 0.091 T

Assuming 2+ (5 - g)+At = 1 (see 5.18), we determine

4 = 0.45 1z, (6.14)

and, from (5.5), it is easy to obtai:

2

2
K = o = o 15
. ib(i-ex&,(-a(m-g)bt)) tM"Hz (6.15)

It follows from (6.13) and (6.15), that
R_ = (0,426. (6.16)

We calculate realization (5.12) of a wideband, discrete,
random process, with parameters (6.10-6.16), in time interval
T = 100 sec. A fragment of realization of this process (24 =
20,000, mg = 1) is presented in Fig. 2 and, in Figs. 3 and 4,
estimates of the spectral density and internsity. The theoretical
spectral densities for a continuous random process and for a
random sequenrce are plotted in Fig. 3 ai.d, in Fig. 4, the *“heo-
retical intensity. From comparison of the curves in Fig. 2, it
is seen that, in the frequency region of interest to us, from

£ =0 Hz to £f = Af ¢f = 1.38 Hz, the effect of the superimposition

is small, and the estimate, calculated for the random sequence,
over the entire frequency range [0 Hz, 5 Hz] well describes the
corresponding theoretical curve. The estimate of the intensity
also is close to the value sought (see Fig. 4). Based on this,
it can be concluded that tnis .sidebard model process is close to
white noise, in the interval Ty, ~ 20 sec - 50 sec, and in the
freq.ency range from 0 Hz to 1.38-1.90 Hz.
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Fig. 2. Realizatiorn of model
stationary noise with random
amplitude and phase (At=0.1 sec,
R=0.426, 2 =5.5 Hz

q=0445 Hz,
£5=0.7 Hz, k=1 kg2/(cm?-Hz),
20=20,000, my=1).

kagz 7234
Carlf) et

22

o1
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Fig. 3. Estimate of spectral density
of stationary noise (At=0.1 sec,R =
0.426,2 =5.". hz, g=0.45 Hz, £ =0.7 Hz,
k=1 kg2/(cm?.Hz), T=100 sec, Af=1.0
Hz, £9=20,000, m0=1); 1. double theo-~
retical intensity, 2 b=2 kR2; 2,
estimate ¢yxp(f); 3. theoretical spec-~
tral density of continuous process

W, (fY; 4. theoretical spectral den-
sfty of discrete process Wy, (f).

Assuming T, = 20 sec,
we calculate the coeffi-
cients of similarity Py
and P, (6.5)

P ~2e, B=05l (6.17)

and we consider two pro-
cesses, similar to this in
the spectral sense, the
effective frequency bands
of which are equal to

%Hz.
(6.18)

Afeff~ss HZ —

Bfogs ~1.38-10P Hz ~ 19.0 I gy,
(6.19)

and the values of Oy and

Op., as before, are
S, ~0.7kg/a® = 0.8kgse?
(6.20)

Up~1.8kg/af — 2.00kg/cd.

Retaining coefficients of
similarity P; and P?, for
the first process, we
obtain:

T, ~ 0.5I sec- 3.7sec,
5“ NWQS Hz-mnz'

@ = 220Hz, al=0.0025sec,
§ =0.227 102 xg/(cut Hz), 9, = 20 Hz,
K = 0.025kqg%/(cu? Hz) , R =0.426
16.22)
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and, fcr the second prc-

$sefe) kg2 s

SF "'?;T.Hz cess.:

T,~+ 2.10%ec~ 5.10€ se-,
$o~ 7-100 Hz ~ 9.5 108 Hz,
D = 55-10%-. ct= 108sec,

7 7 20 w W t.sec 8 = 0.091-10"xg?/ (cut 1),
6 <7 02 ol -
q =4.5'10 Bz,K = 107" kg</(cu® dz),
Fig. 4. Estimate of stationary noise R =0.426.
intensity (6T=0.3 sec, F=3.33 Hz,
AT=15 sec): 1. estimate ¢gp(t); 2. (6.23)

theoretical intensity b.
We present an example,

which shows that, with use
of the scale of the region of values of random process X(t), the
Ecrm of the spectrum remains unchanged (coefficients of similarity
Py and P, are retained), and only tke intensity scale changes. /49
For the seconé process (6.19-6.21, 6.23), le: 0y be increased to
a value of

§,~0.52:10%kg /c - 0.59-10% kg/cu? (6.24)

and, correspondingly,

s
Gp~1.38-10° kg/aw? - I.47°10 Kk9/aad (6.25)

in which, as before:

Afege~13.8-10° oz = 19.0-10% 1z,
T ~ 2:1%sec - 5-16° sec, (6.26)
§, ~ 7-10% Hz « 9.5-10° pz .

From formulas (4.26), (5.17). (4.24), (5.18) and (5.5), we
obtain

9 = 55-i1%mz, ot = 108sec,
B O,Skgz/ ( cu'tz) , 9 =4,510° pz,
Ikg2/ (cn4Hz) . R = I,0. (6.27)

The realization of this , rocess (io = 10,000, g = 3000) is
presented in Fig. 5.
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Since only the values

.z-ﬁ:b‘% of & and fH affect the
10-72%} form of the spectral den-
sity (4.22), from a com-
as10% I parison of (6.23) and
(6.25-6.27), similarity
| | i lI I_ of both processes in the
vvv b TZEEC spectral sense follows.
-as5-10%}
—10-1% » 7. Basic Calculation
Formulas
-y 5. 8L
o We consider the basic
-2.0-10% stages of obtaining esti-

Vi 2506 10w 150° 20w mates of intensity by the
first formula (3.75), with

Fig. 5. Realization of model the use of (3.16), (3.38)

stationary "white” noise, with ran- and (3.39), in the example
dom amplitude and phase (At=10-8 sec, °f the realization: as
R=1,2=55-10° Hz, q=4.5-106 Hz, f,= before, let T be the /50
7.106 EHz, k=1 kgé/(cm4-Hz), £4=10,000, length of the realization,
m0=3000)' n the nux_nbt_ar_of p01nts and
At the digitization step.
As has already been said, we assume that the mathematical expec-
tation of the process equals zero. Therefore, the realization is
centered beforehand. The Fourier transform of process X(t) is a
complex function of the real variable f£. The real part of the
realization of complex random process S(f) is presented in Fig. 6
and, in Fig. 7, its imaginary part. The calculation formulas
have the form:

Re stf) = at T x; aslawt (j- 231 §1
I ]

n . . nsd
jm s(;) = At gx’-sm[bat()- 3 )s] , (7.1)

. i
—mé fé 2st

The real part Re S(f) is an even function of frequency, and the /51
imaginary part Jm S(f) is odd. Therefore, the plot is made
in Figs. 6 and 7, only for £ 2 0. It is easy to see that, approxi-
mately in the frequency range from f = 0 Hz to f = 0.2-10é Hz,

and this means, in the frequency region -F/2 £ f £ F/2 (F/2xAfq¢f),
the process is close to stationary (uniform according to argument
f) and, in the frequency region f = +0.2-108 Hz, a nonstationary
transition begins. We calculate the estimate of ilhe spectral
density, truncated in the interval [-F/2, F/2), of complex rardom
process Sp(f). The spectral density of the complex process, in
distinction from the spectral density of the real process, is not
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an even function. Therefore, it must be calculated over th

entire interval from + = -T/2 to t = T/2. For our complex process
S(f), argument t plays the role of frequency, in which the cir-
crrstance that X(t) is assigned to the interval [-T/2, T/2]1, and
i. equal to zevo outside it, means that the spectral density of
the process S(f) equals zero outside this interval. In this
manner, in accordance with the method c¢f work [17], we select the
digitization step 8f of process S(f) from the conditiorn

%4 = .-}-— i (7.2)

The digitization step df can be made smaller than 1/T, but, for
&f = 1/T, the volume of subseguent calculations is at a minimum.
In our case, T = 4:10-6 gec, i.e., 8f = 0.25-10% Hz.

Let the number of
points of the discrete
corplex process equal

p=F/5¢f, (7.3)

fHz then, the discrete Fourier
transform of the truncated
realization Sp; (3 = 1, 2,
. « . 4 P) is %ritten in

the form
§ A . J ~~ P
7 arwt 22w 23700 a4-w0® asw?  Re Sit) =5f Z
Fig. 6. Real part of realization of ‘RcSqCOQQISﬂj-P’Lt’
complex random process in frequency
region: Re S(f) is an even function ccinfoesi(: _ Ped
(T = 4.0-10-6 sec, 6f = 0.25-100 nz); T ImSysin[assf(j-Sht]}
1. stationary section; 2. transition
section; 3. tail. (7.4)
Tm Sl =0 . (7.5)

Since the imaginarv part equals zero, gF(t) = Re § (t). The
simplest estimate of the spectral density of process S(f) and,
consequently, the estimate of the intensity of process X(t) will
be

t*KWz
13D1*
l&r(t) T t- ]mz. 3 JI

(7.6)
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S Hz

o arw? axw? o310? avr0? asnw?

Imaginary part of realization

Fig. 7.
of complex random process in frequency

region: 9Im S(f) is an odd function
(T = 4.0-10"% sec, §f = 0.25-106 Hz);
1. stationary section; 2. transition

section; 3. tail.
~ kg
4?@7;;7r
10-70*
o510° A
/a b—>
.!;SEC
-25-10°
| \
-10-10°%}
R A s L . ,
g a510°% 13w 15wt 2o0wf
Fig. 8. Result of Fourier transform

of realizetion of complex process
from rfrequ.oncy region to time, at
F = 168 Hz (At = 10-8 sec).

Curves of functions
¥ (t), calculated for
different F,are given in
Figs. 8, 9 and 10. As
follows from the results
of section 3 (see 3.39 and
3.55), truncation of
process S(f) in interval
F and return to the time
region are equivalent to
filtration of initial
process X(t), in the
frequency band from £ = 0
to £f = F/2, This fact,
in particular, is repre-
sented graphically in
Figs. 8-10. In fact, with
the maxipum possible F =
108 Hz, Fp(t) is simply
the initial realization
x(t) (see FPig. 5). With
decrease in F, realization
x(t) is more and more
strongly smoothed.

The rprocedure de-
scribed, for obtaining
intensity estimates by
formulas (7.1), (7.4) and
(7.6) is v=ry laborious,
from the point of view of
calculations. The calcu-
lations can be made
economical, if the second
formula is used for
estimate (3.57). In this

ase, an analog of function
Sp(t) will be function

t+3T/2

Ao A
$“’-5T§ﬂu

x(pdy , (7.7)

obtained by sliding
averages over interval
¢T of realization x(t),

/52

by means of the simplest smoothing operator, the effective fil-

tration band of which is 1/2 68T, i.e.,
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kg\

Sk (t) 7z
10-10%}
“Nil

iy _

1] VJNM* —E;éc

—-“f.f”es.
-10- 0%t
-1.5-10*% \ \ . ,

Y o250t 100t  150°¢ z2ow¥
'ig. 9. Result of Fourier transform

of realization of complex process from
frequency region tc time, for F = 0.4-
108 Hz (At = 10-8 Hz).

~ , . kay
Selt) iz
as-w*

4 t,sec

2510 ‘Lr

10-70° A
g 2.5-10°¢

A o U )
o0t 150°° 200°°

Fig. 10. Result of Fourier transform
of realization of complex process from
frequency regior to time, for F = 0.2-
108 5z (At = 1078 sec).

to calculate S5, we initially determine

~ d
5y = ﬁ'g}“t )

and, then, we use the recurrent relation

A
5i

{ = ssey - d .
792 (j 2,3,4, h + 1)

A
= Sj-g Xt xjfd—l)/J

(7.8)

6T = (7.9)

i
2Mfoff

Finally, the second formula
for the estimate (3.57)
takes the form

tsall2

A T
o0 =L |

i-aTl2

A~

Se(pdy
(7.10)

For sequence X, we obtain

d

” i

S = ¥ 2. Xyt

yod| (7.11)

j =1, 2,3, caeey n,—d-l-{,
A $ .2
\PK = At?é' !Z; slul-l
(7.12)

where /53

d=5T/at , g=aT/at,

K=, 28 w,n-d-9+2,

Rapid calculatign of se-
quences Sj and ¢ can be
carried ott in the follow-
ing manner. For example,
the mean

(7.13)

(7.14)



A similar procedure can be used for calculation of ak'

We note that, if the bulk of the points of the initial reali-
zation x; were assigned in the time interyal [-T/2, T/2], the
bulk of goints of the intensity estimate ¢y will be fixed in a
smaller interval [-T/2 + 8t(d + g - 2)/2, T/2 - At(d + g - 2)/2].

Another way of increasing the speed of calculaticn is to use
the FFT (fast Fourier transform) algorithm [21], for calculation
of functions Re S(f), Im S{(f) and gp(t), a modification of which,
in the case of an arbitrary number n of values of a digital
series, in distinction from the classical n = 2m, is presented in
the following section.

8. Modification of FFT (Fast Fourier
Transform) Method

The procedure of calculation of estimates of the spectral 54
density from one realization S(f) = Re S(f) + i Im S(f) of com-
plex, centered, staticnary, random px« cess S(f), is based on the
Fourier transform & (t), truncated to the interval [-F/2, F/2]
of realization SP(tg

~ M2 Si2wt iztE T it
Selt) =-2° Se(p e . J} =¢ JS({- %)C fdf . (8.1)

Actually, the simplest estimate of the spectral density has the
form (see 7.6)

t+aTi2

| e
v =L 12037
SET AT sz 3 ¥ (8.2)

where the subintegral expression is the periodogram

1S (1)}?
LW =—F—

and AT is the averaging interval of the periodogram.

For calculations by computer, we have to deal with a continu-
ous realizaticn Sgp(f), and with the digital series
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S,=Rese(5j-5) + 1 Im 5,08 - )

j=0,1,2, ..., p-1, The integral on the right side of
(8.1) can be approximately replaced by the sum

~s

ixtfF %
Seplt) = € 8}?355 exp(-i2vtsfj) (8.3)

where 6f is the digitization step and p = F/8§f. With correct
selection of 6f, %F (t) will approximate gp(t), with sufficient
accuracy. (On selection of 8f, see [17].) Thus, thec estimate of
the spectral density for the digital series takes the form

1 t+aT/2 |r<~;( )lg
feplt) = ‘;TJM sk 41 . (8.4)

It is known that, at points t = k/(péf) (k =0, 1, 2, . . . ,
[p/2]) ., the quantities %F (k/ (pdf)) = ok are the Fourier co-
efficients of digital serles

-4

~ LT £
Sw=t L

%exﬂ—us%}).

An algorithm was propos:d in work [21], based on recurrent calcu-
lation of the Fourier conefficient x of complex dicital series
S:, through the Fourier coefficientg of two auxiliary complex
séries, formed from the even and odd elements of series S-:,
respectively (the Coolcy-Tukey method). The number of opérations
necessary to obtain all the Fourier coefficients by this method
is v p logy p, in place of p2 operations, by direct calculation
with formula (8.5). Fcr example, for p = 1000, the calculation
time will be 10J times less, than by the usuval calculations.

This method also has thce additional advantage that all the inter-
mediate calculations and the final result are stored in the same
internal memory cells as the initial values of the series. The
Cooley-Tukey method is realized most simply, in the case, when
the number of terms of series S:; is an exponent of the number 2,
P = 2, since the procedure of %ormation of the auxiliary series /55
can continue, until splitting of the even and uneven elements T
leads to complex series, consisting of one term. The Fourier
transform of this term coincides with itself, multiplied by §f.
Statement of the method and the standard programs written in
Algol, for this case, are in work [12].

~J
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If p is not equal to an exponent of 2, a fast Fourier trans-
form cannot be realized within the framework of a single algo-
rithm. For example, in work [9], in this case, it is recommended
that splitting into two series be carried out until it becomes
easy to calculate the Fourier transform of the auxiliary series
by the usual formula (8.5), or, if p has a simple divisor g, that
the separation be carried out into g auxiliary series.

We consider a simple modification of the fast Fourier trans-
form, which permits an estimate of the spectral density of type
(8.4) to be obtained, for a digital series of arbitrary length p.
Let N = 2 2 p, be the closest tc the p power of 2. We add to
initial series Ss (=6, 1, 2, . . . , p - 1) N - p complex zero
values, and we write the expression for the Fourier coefficients

of the new series Sj

~ . KPP NM-1

I Ty v - Co Koy L
SP.-B $§£% SJ CI})(—(.Z-”J)_ (8. 6)
;_'-iK p-4

=t" W §1Y. 8 expl- v ),

0 x=0,1,2,...,M2.

These coefficients can be calculated by means of the Cooley~Tukey

method. It is evident Lhat the values of S ; are not Fourier
coefficients of the initial series S+, but are certain values of
function Sy _(t), at points t = k/(NG%). In connection with this,
we examine Ehe question of approximate calculation of the integral
in formula (8.4), by means of several values of the subintegral
function.

Since the nodes of the function being integrated are fixed,
construction of the rule of gquadrature must be interpolated. We
rewrite (8.4) in the form

aT
1 | Sepl+t - 8T/2))? (8.7)
Pt = oj =5 dn

and we write the apprcximate value of the integral, in the form of
a quadrature sum
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aT d, (et -aTR)"
1 ~ 2 —~ e
OS T Sl vt =TI dy 2 2 AT T (8.8)

t__iT ¢, <t-r5T , k=12, ...,4d.

It follows from expression (8.3) that gF (t) is a continuous
and continuously d1fferent1ab1e function and, consequently, the
periodogram IS (t) = lgpp(t)l /(p8f) is a smooth function. We
note from other propertles of the periodogram that it is an
oscillating function, with a maximum or minimum exchange p=riod
of approximately 2/F. 1In the interval AT, it accomplishes a large
number of oscillations AT » 2/F [17]. Considering the oscillatory
nature and smoothness of the subintegral functicn, it is natural
to adopt a system of trigonometric functions as the basis of in-
terpolation and to use, as the approximation, & polynomial of the
type

Tﬂv)-a-+Z@1w5“‘q+8 sin En) (8.9)

We oclect parameters Ay and n so that the rule of quadrature /56
{8.8) gives a precise result %or polynomials Ty (n), of the highest pos-
sible degree. As was shown in [11], rule (8.8) cannot be precise,

for any Ay and ny, for all trigonometric polynomials of degree 4.

The highest degree of accuracy, equal to d - 1, is achieved by the
quadrature formula, with equal coefficients Ay = AT/d and equi-
distant nodes. In fact, it is easy to ascertain directly that the
guadrature rule

aT J
}Isr(qd—ﬂ'/z)d»] %—Z;I‘r(&-+<x-s)ﬁ1+t-°;;"-) (8.10)

’

where o is any number (0 £ & < AT/d), is exact, for all trigono-
metric polynomials of degree d - 1., It is sufficient for this,
to verify that (8.10) is exactly fulfilled, for function ISP(C)

exp(i 2 mhg/AT) (h=20,1, . . . ,d-1). If h=0, the right
and left sides obviously equal AT, Ifh=1, 2, ... ,d-1,
the integral eguals

sT _ explizaket-aTAT] oot p

3{ exP[ LZ‘I‘»(VPt-‘AT/Z)/AT] d'] 125K /aT L€ J 0
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and the sum has the value

8.1

. 2ah T, .2k .
AT SFust-40) i B2l 2tk (Lot AT i
a s T & L+t ) -
d :A‘;E e =":T£ . : 1m+10,

which proves exact fulfillment of (8.10). We note that the
quadrature rule (8.10) contains an arbitrary parameter o, the
presence of which means tlat the equidistant nodes can be located
completely arbitrarily in interval AT.

For determination of the number of terms d in quadrature sum
(8.10) which must be taken, in corder to obtain the value of the
integral with the required accuracy, an estimate of the residue
must be carried out

AT J
= +t-ol T e (8.11)
R.J l J I;’,('? t —z—) J? - -t—;—— ‘; ISP(.L ( 1)%1: +t-¥)!.

Since the value of o is completely arbitrary, for simplification
of the contribution, we take it as the middle oZf the interval
[0, AT/d]

= 2d
4 = aT/(2d) (5.12)

We will estimate the accuracy from the value of the maximun ~e-
lative error

£E=Ry/7
/7 (8.13)
where
ar
vJ:ﬂII‘r(V]+‘t—AT/2)d7 .
We reduce the periodogram to the form /57
-4
o5 e, 25 5 0
I‘F(S)‘ P z;;stst + P ,‘“ Q’(I ’ (8.14)
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where

P-i-t Lgr B
Q;(3) = cosl234 PN Rel(s.5k,;) — wnl2s8y) 24 Im(8S%,) |

By calculation of the integral, we obtain

§1aT 20 . o 285aT & cintasfaTi) (8.15)
= < a—a . .
j P & -.(S‘ + P ]‘-Zi TSfAT). OJ(t) .
By substitution of (8.14) and (8.15) in (8.11) and by calculation
of the sum, with allowance for (5.12) and introductlon of similar
terms, we obtain

R, -| 28T ;sf( Toi ) snEaTi) o )| (8.16)

d P\ sinmaj) "3faT Q;“ [,

wiaere a = §6fAT/d.

It follows from (8.16) that the smallness of Rg is sufficient,
so that

alp-) ¢ 1 d.ce, d»¥aT(p-1), (8.17)

is satisfied, but such an estimate is too coarse and it does not
take account of a whole series of properties of the subintegral
function. Since sin (raj) is in the denominator, the region of
values in which the optimum 4@ should be sought, is within

5§aT(pt)c d ¢ o0

We assume that the real and imaginary parts of realization
S; are bounded by the absolute value of constant M; then, the
fgllowing inequality is true

]

2 P-4 .
TeasgaT i+ 4 DS
ol P P-)
Rq <l@—z_,( 5] '1)‘,,3"(33(1&)"

I+
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where

ﬁ(t) = sn (W84 aT)) ( cos235ftj) + sin (2355E))) |

Since, for all j,

| Rty ¢
then,
T < |asfaT M + - 2:1 Ay = (8.18)
IS TS Ty oo
By use of the known relationship L5
:;@-:C-f &(r-1)+§(,;’_—”—~0(-f§z) ,
where € = 0.577 is the Euler constant, we obtain
7< | 25paT M + M2 (¢ +€n(r-4)+y(ﬁ—1+—¢r)|, (8.20)

With expansion of maj/sin (waj) by powers (aj) and by grcuping
the terms, we will have

ot 7 o P14 P-1
R‘;(\M—M = (Zé_%’?TJz)+ 520 (J i ;—" “') l (8.21)

2 .22 r"-ﬁh
=|M?sm {560 + i3505 (6P - 10p*+ )+ )

A shortcomins of estimate of (8.20), connected with use of the
expression Ialn (néfATj)l £ 1, is the circumstance that, with in-
crease of p, it becomesworse, since it increases in proportion to
the logarithm. However, since estimates (8.20) and (8.?1) are
constructed with ide tical assumptions, the estimate of their
ratio € = Ry/5 will not become poorer (in the sense specified)

79



with increase in p.

By extracting the main terms of estimates (8.20) and (8.21),
we obtain an approximate expression for the maximum relative error

l“zmlf-;ll.
foRe T 36 P° g5y T
- i - .22
T AR oy 36 d* bn (p-1) (8.22)
In particnlar, if
d=%4aTp

i.e., ulscrete values of gpp(k/(péf)) are the Fourier coefficients,
then

~ Tz
€™ 36Tucp-D

In this manner, for p = 1000, the relative error will nct exceed
4%, which is corpletely acceptable for our purposes.

Returning to the question of calculation of the estimates of
spectral density by means of ¢ pression (8.6), we note that,
since, in this case

the accuracy of integration will be no less, than in calculatiens,
with the use of the Fourier coefficients (8.£), wvich had to be
proved.

In conclusion of the secticn, we no.e that we have given the
main attention to applicaticn of the FFT to calculation of esti-
mates of spectral density (intensity) ¢Sp(t)r assuming a fixed
digital series Sj. It is clear that series S; can also be obtained
by mecusl 2f the FFT algorithm, by adding (Nj = n) zero values to
centered time series X;, where Nj = 2My 2 nn, is the closest to the
n power of 2. In this case, the digitization step of process
S(f) does not increase over that which .s necessary (see 7.2 and /57
the following text)

i i
S =mw 47
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E- amples are prescnted in the next section, of analysis cof
nonstationary, widebanc, random processes. Digital calculation,
of the estimates of the intenzityv are carried out, both by formula
(7.6) (with the use of the mrAification of the fast Fourier trans-
form method), aud by formuia (7.10), by means of programs, com-
piled in Algol language for the BESM-6 digital computer.

9. Results of Analysis of Model ard
Experimental Processes

We congidered several digita. calculations for stationary
and nonstationary model, random processes, and we discussed cer-
tain questions - .ich arise in anclysis of actual (experiment&l)
prccesses. All —-he basic characteristics of model processes
(At, 2, q,fy, R(t), k), their realizations (2,, mg), as well as
the averaging intervals ¥, §T, /T, Af and the theoretical in-
tensity curves b(t) and cspectral. densities W, (f) are presented in
graphs. We elucidate first and foremost, how selection of param-
eters F and AT affect the quality of intensity estimates (7.6).
We will analyze a model sti“-jiorzry noise, a fragment of a reali-
zation of which is reprerented in Fig. 5.

The effect of change
in parameters F and AT
on the nature of the
estimates of intensity
(7.6) are shown in Figs.
11 and 12. The estimate
has a characteristic
oscillatorv appearance.
With increase of AT and
constart F, the oscil-
lation amplitude decreases
and the period increases.
The oscillation period
i equals ~ 2 AT. With cnn-
stant AT, dispersion of
the estimate increas:s
witl, decrease ir F. 1In
order to preserve the
Fig. il. Effect of change of averaging opt’mum ratio between F

1 | e —
20076 2000° 30107 4010%tsec

interval éT ca estimnte of intensity and AT, as was shown in
¢gp(t) = h%(t)/F (F = 0.4-10%8 uz); work [17] and in section
1. AT = 0.41-10-6 sec; 2. AT = 1.0-10-% 3, with increase of F,
sec; 3. thcoretical intensity b. AT must be increased

according to the pattern

const
2T =—Fm , (9.1
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where the constant de-
pends on the degree of
unsteadiness of the
intensity. In working
with estimate (7.10), /60
to preserve the optimum
ratio between 6T and AT,
with consideration of
(7.8), we find that, with
increase of &T, AT must
be increased by the
pattern

sT = const STV (9.2)

A — 2

10-707%  20507% S0t 4070*¢sec A comparison of the
two intensity estimates
obtained by formulas (7.6)

Fig. 1?. Effect of change of interval and (7.10) is demonstrated

g on estimate of intensity ¢gp(t) = by the example of analy-
(t)/ F (AT = 0.41-10"6 sec); 1. F = sis cf a ronstationary,

052108 Hz; 2. F = 0.4-108 Hz; 3. wideband noise, the in-

theoretical intensity b. tensity of which is

exponentiall;y damped

(Fig. 13}. The small
difference in the estimates is connected with the difference in 4__
frequency characteristics of the filt.ation operators (3.38, 3.390r
7.4, and (3.55 or 7.7), with wideband Z, £ = F/2 = 1/(26T).
The {requency characteristic of filter (7.4) is variable over time
t, in interval [-T/2, T/2]. It differs from rectilinear shape at
the edges of interval [-T/2, T/2], and it is closest to recti-
linear shape in the middle of the interval, in which, the larger
T, the better the approximatiou. The analytical expression of the
frequency charactaristic of the filter has the form

W50 = PAE D * T5, (9.3)
where
t+TI2 Ty
Futi=] S5 wmpede
-12
t+T2 5P
Q) :t:le'i‘L__t. w 2§ dT
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kg? The freguency character-
Porlt)r s istic of filter (7.7) is
constant over time, and
it does not depend on
interval T

_ sin(33T#) (9.4)
J&Jf)" 75T f ; .

0% oy 78 gyl An intensity esti-
1070 20707 30 7% 40107%¢tsec mate, calculated from
realization of a non-
stationary noise, the
intensity of which in-
creases expcnentially,
is presented in Fig. 14.
In the interval [-T/2 +
(AT + 8T)/2, T/2 ~(AT +
§T)/2), the estimate
approximates the func-
tion sought b(t) suf-
ficiently well. Just as
in the preceding example
(Fig. 13), the intensity
changes smoothly here
in the observation interval and, consequently, for AT ~ T,, the
estimate, not only has little dispersion, but little displacement.
The characteristic scale of the problem

Fig. 13. Comparison of ir.tensity
estimates, obtained by means of various
filtration operators with "wide" band
L="F/2 (oAt = 1073 sec; D = 55-106 Hz;
q= 4.5-106 Hz; £, = 7.106 Hz, R(t) =
exp(-0.575-106 4z-t sec); k = 1 kg2/cmé
“Hz); AT = 1.0-106 sec; %4 = 10,000;

my = 3000); 1. thegretical intensity
blt); 2. estimate ¢gp(t) (8T = 3-1078
sec); 3. estimate ¢gF(t) (F = 0.4-108
sec).

T, ~ 2.0 10%ec - 4.0 106sec,
and the effective bandwidth of the noise

Af g e~13.8-100 Bz - 19.010P Hgz,
consequently, the leit side of condition (6.4) has this value

Tybfaff~<8 ~ % . (9.5)

The practical conclusion can be drawn from this, that, if the /62
product of the characteristic scale of the unsteadiness and the =
effective bandwidth of “he progress is within specified limits,
estimate (7.5) or (7.10) will give satisfactory results.
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Fig. 14. Intensitv estimate, calcu-

lated by one realization of model,
nonstationary "white" noise (At = 10-8
sec, D = 55-106 Hz, q = 4.5-10% Hz,
fq = 7-106 Hz, k = 1 kg?/(cm? Hz), R(t)

= exp(0.575-106 Hz*t sec), AT = 1.0-
10-6 sec, 8T = 3-10"8 sec, F = 0.333-
108 Bz, 20 = 20,000, my = 2000); 1.

estimate ¢gp(t); 2. thecretical in-
tensity b(t).

Afogs ~ 13.8 108 Hz - 19.0 1° Bz
££

kg
Iﬁ?@;?*

20104

15704

1.0-10%

A } llll;l. I i.H»Hl.n.l In
) b il

] ¢, sec

-a.510%

-1.0-70%}

~7.510% 1
7 10907

. N S S
200*f 010 ¢ sow”?
Realization of model slightly

Fig. 15.
10-8

nonstationary "white" noise (At =
sec, D = 55-106 Hz, g = 4.5-106 Hz, £y~
7.106 H , k = 1 kg2/(cm4-Hz), R(t) =

2.25.10°12/2.25°10-12 + (t - 1.5-1076)2),

QO = 10,000, mo = 1),

84

We now examine two
examples of nonstationary,
wideband noises, in whicu
shifting of the intensity
estimnates plays the most
significant role. Frag-
ments of the realizations
and the basic parameters
of thec~ processes are
represented in Figs. 15
and 17. The intensity
has a "bell-shaped"
appearance (see Figs. 16

and 18). The width of
the first “bell"” T, =
2.0-10"6 sec (we call

this process slightly
nonstationary), and the
width of the second
"bell" T, = 0.6-107°
(we call th.s process
sha.ply nonstationary).
As before, the effective
bandwidth for both pro-
cesses 1is

secC

In this manner, for a /63
slightly nonstationary
process,

T,Af _~-28 - 38, (©.6)

Leff

and, for a snarply non-
stationary one,

T, 8 -1 (9.7)

feffv

Intensity estimates, ob-

tained for two independent
realizations of a slightly
nonstationary process, are



presented in Fig. 16.

w{;bﬁ%f,’ The estimates calculated
25 on the realization (&=

15,000, m; = 1000)
approxima%es well the
desired function, which
is completely natural,
since the process satis-
fies condition (9.5).
However, the estimate
calculated from reali-

425

g 1090° 0wt dgw*  4owdtsec zation (1g = 10,000

mg = 1) differs from the
Fig. 16. Intensity estimates, calcu- desired functicn on the
lated by two independent realizations right slope of t@e )
of model slightly nonstationary “white" "bell."™ 1In examination
noise (F = 0.4-108 Hz, AT = 1.0-10-6 of this realization
sec). The characteristic unsteadiness (Fig. 15), it is easy to
scale T, = 2.106 sec; 1. theoretical see that the error in
intensity b(t); 2. 29 = 10,000, my = the estimate is caused
1; 3. 2; = 15,000, my; = 1000. by the presence of a

large scatter in the
realization, in the

. kg middle of the observa-
=ltiz, tion interval. This
wntt error is due to disper-

ol sion of the estimate.
ol The presence of large

single discharges in

7] some realizations of the

. random process means
a1 that process has slight
1.0-10" . o . | ergodicity, relative tc

0 10108 20w0%  sow¥ 4ow’ the correlation moment.

Two intensity esti-
ments, calculated for

Fig. 17. Realization of model sharplg the realizations rep-

nonstationary "white" noise (At =

secs 2. 55100 Bz g = 4.5-106 pz, fy= lzisegtgcli 330F1r?1(., =" 2000)
Zoigz/gzst,; 12kf {écT ng)iORét£_ are presented irn Fig. 18.
1 = 20,000, my = 2000). One estimate was obtained

for the averaging inter-
val AT = 1.0-10"% sec,
cf the large characteristic scale of unsteadiness Ty = 0.6-107 -6 sec.
The estimate has a larce shift. The other as tlmate was cal-
culated for the interval AT = 0.3.10-6 sec, which is less than /64
T.. In this case, the displacement can be disrcgarded, but, in
view of the fact that cordition (9.5) is not observed, the esti-
mate poorly approximates the desired function b(t), because of

the great dispersion.
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Tig. 18. 1Intensity estimates, obtained
from realizations of model sharply non-
stationary "white" noise (F = 0.4-108
Hz). The characteristic scale of un-
steadiness T, = 0.6-10"6 sec; 1. AT =
1.0-10-6 sec; 2. AT = 0.3-10-6 sec;

3. theoretical intensity b({t).

k
=(t) ’4‘7%1
410

a.05

7

20 2.5

19.

Fig. Realization of wideband noise,
cbtained from experiment (experimental
noise), At = 0.005 sec, Af.ff ~ 50 Hz,

T ~ 0.5 -~ 1.0 sec.

in the interval from £ = 0 Hz to f = Afgff.

Before precceeding
to analysis of a real
process, a fragment of
the realization of which,
obtained from an experi-
ment, is represented in
Fig. 19, we note cne im-
portant circumstance
which p.ovides new pros-
pects for analysis of the
intensity of real non-
stationary processes.
have already noted in
section 6 that the model
processes constructed in
this work can approximate
actual random processes
well. 1In crder to be con-
vinced of this, it is
sufficient to glance at
Fig. 15 and Fig. 19 and
to agree that, if the
legends of these figures
were removed, it wculd be
difficult to explain, why
one realization was a
realization of a model
noise and the other was
obtained in an experiment.
The significant differences
of the majority of real
processes from the model
ones considered here is
that real processes can
contain, first, narrow-
band sections which sud-
denly appear and then
disappear, second, the
spectrum of a real noise
can have two or more
different wideband levels
Finallv, in real

We

processes, a change in the effective bandwidth Af ¢f can take

place with the passage of time.

Nf course, interesting models

can be constructed for all these cases, but we will nct dwell on

this.

The concept of intensity loses meaning for such processes,

since they begin to be wideband processes, which are close to
white i.nise, but one can speak of the frequency average intensity
by analogy with the average (cver time) spectral density, which

sometimes is used in analysis of nonstationary processes.

Thus,

in analvsis cf the realization of a nonstationary, random process,

8¢



it is advisable, together with estimates of dispersion and the
time average spectral density, to calculate the estimate of the
frequency averaged intensity. With the exception of random
coincidences, the nature of change in dispersion and intensity
will be the same, if the unsteadiness of the noise is caused only
by change in the total level, and is not connected with change in
the effective bandwidth of the random process or with the
appearance of narrow band components. A joint comparison of
dispersion, frequency average intensity and time averaged spectral
density of a nonstationary, random process, permits compilation

of a representation of the structure of the process. As an ex-
ample, we examire an analysis of a realization obtained experi-
mentally. Estimates of the time average spectral density, calcu-
lated for two averaging intervals Af = 2.5 Hz and Af = 20 Hz,

are presented in Fig. 20. The first estimate (Af = 2.5 Hz) shows
that there is an increased level in the process, in the 0 - 3 Hz/65
region, and a narrow band section in the 16 - 24 Hz region. It
follows from the second estimate that two spectral density levels
predominate in the frequencg 1nterval frecm £ = 0 to £ = 50 Hz:
low-freguewc (0.075.10~4 /(cm Hz)) and high-frequency (0.05-
10-4 /(cm *Hz) ). Estlmates of the dispersion and the frequency
averaged intensity, calculated for this realization, are presented
in Fig. 21 Although the estimates are plptteq 1n different
scales, tI  are such that the nature of change in them permits
the locati n of the narrow band section to be identified immedi-
ately, namely: in the time interval from t = 2.0 sec to t =~ 2.8
sec, the ejuidistant change in dispersion and intensity is dis-~
rupted, i.e., in this section, the proncess begins to be wideband.
In the ti.e intervals from t = 1.0 sec to t = 2.0 sec and from

t = 2.8 _ec to t ~ 3.6 sec, analysis of the estimates of dispersion,
intensity and spectral density (Af = 20 Hz) viows that, in these
sections, the low frequency noise level is ce .sive (~0.04-10"4
kgz/(cm4 Hz)), and that the hlgh frequency noise level (~0.025-
10-4 kg /(cm4 *Hz)) is decisive in the interval from t = 3.6 sec

to t = 4,9 sec., We recall that the average sp:.ctral density level,
by definition, is twice the average intensity level, i.e., the
result of the spec .ral analysis (Fig. 20) and the result of analy-
sis of intensity (Fig. 21) agree satis“actorily.

We note in conclusion that a more detailed analysis of the

structure of this process can be condncted, by means of analysis
of estimates of the insta taneous power spectrum.
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spectral density, obtained from reali-
zation of experimental noise with
narrow band section (a) (At = 0.0025
sec, T = 4.9 sec); 1. Af = 2.5 Hz; 2.
Af = 20 Hz.
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Fig. 21. Estimates of dispersion and

frequency averagedintensity, calculated
from realization of experimertal noise
with narrow Find section ‘2 = 0.0025
sec, Afg g = 50 Hz, T, ~ ~ 1.0 sec,
§T = 0.01 sec, F =~ 54 Hz;, a. wideband
noise section; b. narrow ba..d section;
1. intensity estimate ¢gp(t) (AT =~ 0.3
sec); 2. dispersion estimate r(t, t;
(AT = 0.3 sec).
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Conclusions

1. BAnalysis of the
connection between sta-
tionary (uniform) in the
broad sense, random pro-
cesses ard white noise
has permitted construc-
+ion of a method of
estimation of the inten-
sity of nonstationary,
wideband processes.

2. If random pro-
cess X(t) is such that,
in the time or frequency
regions, it permits aver-

aging over a large interval

and, consequently, aver-

aging over a small interval

can be carried out by
another variable, for

such a process, the methods

considered permit esti-
mates of the quadratic
characteristics to be ob-
tained, with small dis-
placement and dispersion.

3. By means of
digital analysis of model
random processes, es-
pecially realized by
digital compuvter, and of
real processes, the con-
ditions of applicability
of the methods have been
studied in detail, and
concrete recommendations
for their practical use
have beer given.

4, The basic rule
in calculation of inten
sity estimates from indi-
vidual reclizations is
that the bandwidth F of
the first filter must be



less than the effective bandwidth of the noise being studied, and
the bandwidth 1/AT of the second filter ~ust be, first, much less
than F and, second, the value of interval AT must be much less
than the assumed characteristic scale of the nonstationary change
of irtensity T,.

5. 1\n estimate is proposed, for accelerated calculation of
intensity, in which trigonometric functions are not used. The
number of operations of the algorithm is proportional to the
number of points of time series xj.

6. A modification of the fast Fourier transform method is
proposed, applicable to the calculation of estimates of the
spectral density, for a digital series of arbitrary length n,
in distinction from the classical case of n = 2T,
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